首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Parts of the 16s and 30s RNA species of reticulocytes are readily hydrolysed by pancreatic ribonuclease. The biological activity of the ribosomes is diminished after treatment with low concentrations of the enzyme (e.g. 1ng. of ribonuclease/2.5mg. of polyribosome fraction/ml.). A high proportion of the chain scissions are ;hidden' owing to the secondary structure of the RNA moiety. 2. As the concentration of ribonuclease is increased RNA is lost from the ribosome. About 20-30% of the RNA may be removed from the ribosome without altering appreciably its sedimentation coefficient or its appearance in the electron microscope. 3. The amount of RNA removed from the ribosome is not increased by raising the concentration of enzyme from about 1mug. to 2.5mg. of ribonuclease/2.5mg. of polyribosome fraction/ml., or by increasing the temperature from 0 degrees to 30 degrees , or by first converting the RNA moiety into a single-stranded form before exposure to ribonuclease. 4. Untreated polyribosomes aggregate at about 75 degrees , whereas ribosomes treated with ribonuclease aggregate at about 45 degrees . The aggregates that are found on heating ribosomes after enzymic hydrolysis contain about 40-50% of the complement of RNA of intact ribosomes. 5. From the size of the fragments of RNA isolated from RNA-depleted ribosomes it is inferred that there is one site/60-100 nucleotides that is sensitive to ribonuclease. 6. The RNA moiety of RNA-depleted ribosomes has some double-helical character as shown by the optical properties and X-ray-diffraction pattern of ribonuclease-treated ribosomes and by the ;melting' properties of the isolated RNA. 7. Subparticles prepared by titration with an excess of EDTA are readily hydrolysed by ribonuclease to fragments of S(20,w) less than 4s, in contrast with the intact particle.  相似文献   

2.
To determine the region of 16S ribonucleic acid (RNA) at the interface between 30 and 50S ribosomes of Escherichia coli, 30 and 70S ribosomes were treated with T1 ribonuclease (RNase). The accessibility of 16S RNA in the 5' half of the molecule is the same in 30 and 70S ribosomes. The interaction with 50S ribosomes decreases the sensitivity to T1 RNase of an area in the middle of 16S RNA. A large area near the 3' end of 16S RNA is completely protected in 70S ribosomes. The RNA near the 3' end of the molecule and an area of RNA in the middle of the molecule appear to be at the interface between 30 and 50S ribosomes. One site in 16S RNA, 13 to 15 nucleotides from the 3' end, normally inaccessible to T1 RNase in 30S ribosomes, becomes accessible to T1 RNase in 70S ribosomes. This indicates a conformational change at the 3' end of 16S RNA when 30S ribosomes are associated with 50S ribosomes.  相似文献   

3.
4.
The 70 S ribosomes of Escherichia coli were treated with 2-iminothiolane with the resultant addition of 110 sulfhydryl groups per ribosome. The modified ribosomes were oxidized to promote disulfide bond formation, some of which formed intermolecular crosslinks. About 50% of the crosslinked 70 S ribosomes did not dissociate when exposed to low concentrations of magnesium in the absence of reducting agent. Dissociation took place in the presence of reducing agents, which indicated that the subunits had become covalently linked by disulfide linkages. Proteins extracted from purified crosslinked 70 S ribosomes were first fractionated by polyacrylamide/urea gel electrophoresis. The proteins from sequential slices of these gels were analyzed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Monomeric proteins derived from crosslinked dimers appeared below the diagonal containing non-crosslinked proteins, since the second electrophoresis, but not the first, is run under reducing conditions to cleave the crosslinked species. Final identification of the proteins in each dimer was made by radioiodination of the crosslinked proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis in the presence of non-radioactive total 70 S proteins as markers. This paper describes the identification of 23 protein dimers that contained one protein from each of the two different ribosomal subunits. The proteins implicated must have some part of their structure in proximity to the other ribosomal subunit and are therefore defined as “interface proteins”. The group of interface proteins thus defined includes 50 S proteins that are part of the 5 S RNA: protein complex and 30 S proteins at the initiation site. Correlations between the crosslinked interface proteins and other functional data are discussed.  相似文献   

5.
Escherichia coli strain 15--28 is a mutant which during exponential growth contains large amounts of a '47S' ribonucleoprotein precursor to 50S ribosomes. The '47S particles' are more sensitive to ribonuclease than are 50S ribosomes. The 23 S RNA of 47S particles may be slightly undermethylated, but cannot be distinguished from the 23S RNA of 50S ribosomes by sedimentation or electrophoresis. Isolated particles have 10--15% less protein than do 50S ribosomes; proteins L16, L28 and L33 are absent. Comparison with precursor particles studied by other workers in wild-type strains of E. coli suggests that the assembly of 50S ribosomes in strain 15--28 is atypical.  相似文献   

6.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

7.
Characterization of ribosomes from dormant spores and vegetative cells of Bacillus cereus strain T has been carried out. Polyuridylic acid binding activity, ribonuclease activity associated with ribosomes, thermal denaturation profile, and sedimentation coefficients are essentially identical for both ribosomal preparations. However, ribosomal protein content of dormant spore ribosomes is about 70% of that of vegetative ribosomes. Polyacrylamide gel electrophoresis of ribosomal proteins shows that some ribosomal proteins are missing from dormant spore ribosomes. Sucrose density gradient centrifugation of ribosomes shows the existence of defective ribosomal subunits, in addition to 30S and 50S subunits, in dormant spore ribosomes. These results indicate that the ribosomes from dormant spores are distinctively different from those of vegetative cells.  相似文献   

8.
Ribosomes from Streptococcus pyogenes, group A, strain 29 were studied. A comparison of different methods of ribosomal isolations has shown that the homogenous ribosomal samples can be obtained by the method of differential ultracentrifugation using tris-HCl buffer. The ribosomes of S. pyogenes had the sedimentation coefficient of 70S and consisted of 65% of protein and 35% of nucleic acids; the ribosomes dissociated into subparticles with the sedimentation coefficients of 50S and 30S under a low magnesium concentration. Thus the S. pyogenes ribosomes do not differ from the ribosomes of procaryotes. It was shown that the ratios of 70S, 50S and 30S ribosomal subparticles in the cells depend on the growth phase of S. pyogenes. The cells of the middle and the late logarithmic phase contained 50S and 30S particles in a stoichiometric ratio. In the cells of the late stationary growth phase there was a deficiency of 30S ribosomal subparticles which does not result from a loss during the isolation procedure, as it was already observed in the initial 30S fraction.  相似文献   

9.
On incubation of 50 S ribosomes, isolated from either tight couple (TC) or loose couple (LC) 70 S ribosomes, with elongation factor G (EG-G) and guanosine 5'-triphosphate, a mixture of TC and LC 50 S ribosomes is formed. There is almost complete conversion of LC 50 S ribosomes to TC 50 S ribosomes on treatment with EF-G, GTP, and fusidic acid. Similarly, TC 50 S ribosomes are converted to LC 50 S ribosomes, although partially, by treatment with EF-G and a GTP analogue like guanyl-5'-yl methylenediphosphate (GMP-P(CH2)P) or guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) and including a polymer of 5'-uridylic acid (poly(U] in the incubation mixture. Furthermore, LC 23 S RNA isolated from LC 50 S ribosomes is converted to TC 23 S RNA on heat treatment, but similar treatment does not affect TC 23 S RNA. The interconversion was followed by several physical and biological characteristics of TC and LC 50 S ribosomes, like association capacities with 30 S ribosomes before and after kethoxal treatment, susceptibility to RNase I and polyphenylalanine-synthesizing capacity in association with 30 S ribosomes, as well as thermal denaturation profiles, circular dichroic spectra, and association capacity of isolated 23 S RNAs. These data strongly support the proposition that TC and LC 50 S ribosomes are the products of translocation during protein synthesis. The conformational change of 23 S RNA induced by EF-G and GTP is most probably responsible for the interconversion, and L7/L12 proteins play an important role in the process. A two-site model based on kethoxal data has also been proposed to explain the tightness and looseness of 70 S couples.  相似文献   

10.
Biochemical and morphological studies were performed on Novikoff hepatoma ascites cell nucleolar matrix fractions prepared by deoxyribonuclease I digestion and high-molarity salt extractions essentially according to a published method [Berezney, R., & Buchholz, L. A. (1981) Exp. Cell Res. 20, 4995-5002]. The nucleolar matrix fraction was enriched in polypeptides of molecular mass of 28, 37.5, 40, 70, 72, 110 (protein C23), and 160 kDa, compared to the nuclear fraction in which polypeptides of molecular mass of 31, 33.5, 43.5, 46, 50, 56, and 59 kDa were predominant. About one-fourth of the protein, half of the RNA, and less than 4% of the DNA originally present in the nucleoli remained in the matrix fraction. Addition of single agents such as ethylenediaminetetraacetic acid, ribonuclease A, or mercaptoethanol during preparation had no significant effect on the polypeptide composition of the nucleolar matrix fraction. However, the combination of mercaptoethanol and ribonuclease A caused most of the RNA and protein to be removed, including protein C23 and the 160-kDa polypeptide, with polypeptides in the range of Mr 30 000-50 000 remaining. Electron microscopy of nucleolar matrix fractions revealed the presence of particles similar in size to the granular elements of nucleoli. However, when ribonuclease A and mercaptoethanol were included in the procedure, only amorphous material remained. Many proteins of nucleolar preribosomal RNP particles were also associated with the nucleolar matrix fraction. RNA from the nucleolar matrix fraction was enriched in sequences from 18S and 28S ribosomal RNA. These results indicate that preribosomal RNP particles are major constituents of a nucleolar matrix fraction prepared by the deoxyribonuclease I-high-molarity salt method.  相似文献   

11.
The influence of amino acid starvation on polysome content was examined in relaxed and stringent strains of Escherichia coli which were isogenic for the RC locus. No difference was observed between the polysome profiles obtained from two different sets of stringent and relaxed strains starved for the same amino acid. In both relaxed and stringent strains, starvation for amino acids other than methionine resulted in only a slight breakdown of polysomes with a concomitant increase of 70S ribosomes. However, starvation for methionine in both RC stringent and relaxed strains of E. coli resulted in a more extensive degradation of polysomes and accumulation of 70S ribosomes. The 70S ribosomes obtained as a result of methionine starvation were more sensitive to degradation to 50 and 30S subunits in 10(-3)m Mg(2+) than 70S monomers obtained either by degradation of polysomes with ribonuclease or by starvation of cells for amino acids other than methionine. The 70S ribosomes from methionine starvation were similar (sensitivity to 10(-3)m Mg(2+)) to 70S ribosomes obtained from cells in which initiation of protein synthesis had been prevented by trimethoprim, an inhibitor of formylation. Since N-formyl-methionyl-transfer ribonucleic acid is required for initiation, the 70S ribosomes obtained in both methionine-starved and trimethoprim-treated cells must result from association of 50 and 30S subunits for reasons other than reinitiation. These results suggest that the level of ribonucleic acid synthesis does not influence the distribution of ribosomes in the polysome profile and vice versa.  相似文献   

12.
Strain BM108 of Escherichia coli has a chromosomal mutation in the rpmB , G operon that prevents synthesis of ribosomal proteins L28 and L33. The mutation was lethal unless synthesis of protein L28 was induced from a plasmid. Without protein L28, RNA and protein synthesis were linear rather than exponential. No 70S ribosomes were made. Instead, RNA accumulated in '30S material' and '47S particles'; the latter were distinct from 50S ribosomal subunits, lacked proteins L28 and L33 and had substoicheometric amounts of three other proteins. When L28 synthesis was induced (but protein L33 was still absent), the strain grew as well as, and assembled 70S ribosomes with similar kinetics to, a wild-type control. Thus, protein L28 is required for ribosome assembly in strain BM108 while protein L33 has no significant effect on ribosome synthesis or function.  相似文献   

13.
Ribosomal preparations from Neisseria gonorrhoeae types 1 and 4 were examined for their in vitro stimulation of mouse splenocytes to determine the ribosomal moiety or contaminant responsible for the immunoproliferative activity. In immunodiffusion tests with homologous rabbit antiserum, crude 70S ribosomes formed four precipitin bands while the purified 30S and 50S subunits showed one major line. The same antiserum reacted with lysed N. gonorrhoeae and Neisseria meningitidis A cells but no precipitation occurred with Escherichia coli cells purified N. gonorrhoeae lipopolysaccharide (LPS). No membrane or LPS contaminant was detected in the purified 30S and 50S preparations. All the ribosomal preparations from virulent and non-virulent N. gonorrhoeae consistently stimulated the murine splenocytes. The mitogenic activity of the 30S and 50S ribosomal preparation was destroyed by treatment with trypsin but only slightly decreased by ribonuclease. It is suggested that the lymphoproliferative response elicited by gonococcal ribosomes is triggered by the protein moiety of the 30S or 50S subunits.  相似文献   

14.
30S ribosomal subunits, 70S ribosomes or polysomes from E. coli were subjected to mild ultraviolet irradiation, and the 3'-terminal region of the 16S RNA was excised by 'addressed cleavage' using ribonuclease H in the presence of suitable complementary oligodeoxynucleotides. RNA fragments from this region containing intra-RNA cross-links were separated by two-dimensional gel electrophoresis and the cross-link sites identified by our standard procedures. Five new cross-links were found in the 30S subunit, which were localized at positions 1393-1401 linked to 1531-1532, 1393-1401 linked to 1506, 1393-1401 to 1502-1504, 1402-1403 to 1498-1501, and 1432 to 1465-69, respectively. In 70S ribosomes or polysomes the first four of these were absent, but instead two cross-links between the 1400-region and tRNA were observed. These results are discussed in the context of the tertiary folding of the 3'-terminal region of the 16S RNA and its known functional significance as part of the ribosomal decoding centre.  相似文献   

15.
In vivo incorporation of the uridine-photoactivable analogue, 4-thiouridine, into the ribosomal RNA of an Escherichia coli pyrD strain has been demonstrated. It is highly dependent on the exogenous uridine and 4-thiouridine concentrations as well as on temperature. We have defined conditions allowing the substitution of 13 +/- 2% of the uridine residues in bulk RNA by 4-thiouridine. On a high-Mg2+ sucrose gradient, 33 +/- 3% of ribonucleic particles sediment as 70S ribosomes, the remaining being in the form of non-associated 50S and 30S particles containing immature rRNA. The thiolated 70S ribosomes tolerate a 4-5% substitution level (40 thiouridine molecules/particle). Surprisingly, 3-4% of ribosomal proteins, about two protein molecules/particle, were spontaneously covalently bound to 4-thiouridine-substituted rRNA. Specific 366-nm photoactivation increased this proportion to 10-12%, i.e. up to six or seven ribosomal protein molecules/particle. The photochemical cross-linking proceeds with apparent first-order kinetics with a quantum yield close to 5 X 10(-3). Although extensive photodynamic breakage of rRNA occurs under aerobic conditions, both the kinetics and yield of ribosomal protein cross-linking were independent of oxygenation conditions. The thiolated (4.5%) 70S ribosomes allowed the poly(U)-directed poly(Phe)synthesis at 48% the control rate. Photoactivation decreased this activity to 28% and 10% when performed under nitrogen and in aerated conditions, respectively.  相似文献   

16.
Concentrated extracts of Halobacterium cutirubrum were prepared at 0 C by gently disrupting cells with a nonionic detergent in a medium containing 3.0 m KCl, 0.5 m NH(4)Cl, and 0.04 m (or more) magnesium acetate and then treating the gelatinous mass with deoxyribonuclease. On KCl-sucrose gradients containing 0.5 m NH(4)Cl and 0.04 m magnesium acetate, these extracts showed 30S and 50S ribosomal subunits plus a flat profile of faster-sedimenting material up to high S values. Only after frozen storage or brief incubation of the extract were 70S ribosomes and distinct classes of small polyribosomes detected. Digestion with ribonuclease converted faster-sedimenting material to 70S particles. The presence of chloramphenicol during preparation of the extracts did not affect these results. The evidence suggests that ribosomal particles exist in these cells as subunits or as polyribosomes but not as 70S ribosomes. To investigate the function of Mg(++) and NH(4) (+) ions in ribosomal complexes from this halophile, concentrated cell extracts and extracts incubated with (14)C-leucine were examined on KCl-sucrose gradients containing different concentrations of these ions. Polyribosomes and the bulk of 70S ribosomes dissociated reversibly to subunits at about 0.01 m Mg(++), whereas a small fraction of the 70S particles, including those which in vitro incorporated (14)C-leucine into nascent protein, dissociated only below 1 mm Mg(++). Below this concentration of Mg(++), nascent protein remained attached to the 50S subunit even at 0.04 mm Mg(++) in the presence of 0.35 to 0.5 m NH(4)Cl. Nascent protein, presumably as peptidyl-transfer ribonucleic acid, dissociated reversibly from 50S subunits only at 0.04 mm Mg(++) and 0.1 m or less NH(4) (+). Thus, the stability of polyribosomes from H. cutirubrum depends specifically on both Mg(++) and NH(4) (+) ions.  相似文献   

17.
R T Marconi  W E Hill 《Biochemistry》1989,28(2):893-899
A nine-base oligodeoxyribonucleotide complementary to bases 2497-2505 of 23S rRNA was hybridized to both 50S subunits and 70S ribosomes. The binding of the probe to the ribosome or ribosomal subunits was assayed by nitrocellulose filtration and by sucrose gradient centrifugation techniques. The location of the hybridization site was determined by digestion of the rRNA/cDNA heteroduplex with ribonuclease H and gel electrophoresis of the digestion products, followed by the isolation and sequencing of the smaller digestion fragment. The cDNA probe was found to interact specifically with its rRNA target site. The effects on probe hybridization to both 50S and 70S ribosomes as a result of binding deacylated tRNA(Phe) were investigated. The binding of deacylated tRNA(Phe), either with or without the addition of poly(uridylic acid), caused attenuation of probe binding to both 50S and 70S ribosomes. Probe hybridization to 23S rRNA was decreased by about 75% in both 50S subunits and 70S ribosomes. These results suggest that bases within the 2497-2505 site may participate in a deacylated tRNA/rRNA interaction.  相似文献   

18.
The effect of 30S subunit attachment on the accessibility of specific sites in 5 S and 23 S RNA in 50 S ribosomal subunits was studied by means of the guanine-specific reagent kethoxal. Oligonucleotides surrounding the sites of kethoxal substitution were resolved and quantitated by diagonal electrophoresis. In contrast to the extensive protection of sites in 16 S RNA in 70 S ribosomes (Chapman &; Noller, 1977), only two strongly (approx. 90%) protected sites were detected in 23 S RNA. The nucleotide sequences at these sites are
in which the indicated kethoxal-reactive guanines (with K above them) are strongly protected by association of 30 S and 50 S subunits. The latter sequence has the potential to base-pair with nucleotides 816 to 821 of the 16 S RNA, a site which has been shown to be protected from kethoxal by 50 S subunits and essential for subunit association. Six additional sites in 23 S RNA are partially (30 to 50%) protected by 30 S subunits. One of these sequences,
is complementary to nucleotides 787 to 792 of 16 S RNA. a site which is also 50 S-protected and essential for association. Of the two kethoxal-reactive 5 S RNA sites in 50 S subunits, G13 is partially protected in 70 S ribosomes. while G41 remains unaffected by subunit association.The relatively small number of kethoxal-reactive sites in 23 S RNA that is strongly protected in 70 S ribosomes suggests that subunit association may involve contacts between single-stranded sites in 16 S RNA and 50 S subunit proteins or non-Watson-Crick interactions with 23 S RNA. in addition to the two suggested base-paired contacts.  相似文献   

19.
Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Effect of trypsin and ribonuclease on the immunogenic activity of ribosomes and ribonucleic acid isolated from Myobacterium tuberculosis. J. Bacteriol. 91:2146-2154. 1966.-The ribosomal fraction of the attenuated strain, H37Ra, of Mycobacterium tuberculosis was treated with trypsin alone, ethylenediaminetetraacetic acid (EDTA) alone, EDTA and pancreatic ribonuclease, or with trypsin and ribonuclease. After each of these treatments, the ribosomal fractions were injected intraperitoneally into male CF-1 mice to test their capacity to produce an immune response to infection with virulent tubercle bacilli, strain H37Rv. Removal of protein with trypsin left the immunogenicity unchanged; EDTA alone reduced immunogenicity in the smaller vaccinating doses; EDTA plus ribonuclease reduced the immunogenicity by approximately 50% in the highest (1.0 mg) vaccinating dose; ribonuclease alone, after treatment with trypsin, reduced immunogenicity also approximately 50%. A crude mycobacterial ribonucleic acid (RNA) was prepared by extraction of the ribosomal fraction with alcohol. This RNA preparation was as effective in producing an immune response as the ribosomal fraction from which it was prepared, unless the RNA was partially or completely degraded during the preparation. The effect of ribonuclease on the immunogenicity of the RNA was similar to that obtained with the ribosomal fractions, except that ribonuclease completely destroyed the immunogenicity of a partially degraded RNA. RNA appears to be an essential part of an immunizing substance in attenuated tubercle bacilli, which produces a high degree of immunity in mice; 50 mug (dry weight) will protect approximately 80% of the mice, and as little as 0.5 mug will protect approximately 30% of the mice. Mycobacterial RNA not incorporated in Freund's incomplete adjuvant was nonimmunogenic. Yeast RNA incorporated in Freund's incomplete adjuvant was not immunogenic.  相似文献   

20.
The effect of ribonuclease on rat-liver ribosomes   总被引:4,自引:3,他引:1       下载免费PDF全文
1. Rat-liver ribosomes lose about 50% of their amino acid-incorporating activity when preincubated with ribonuclease. 2. This preincubation results also in loss of about 50% of the original protein content and 75% of the RNA. 3. Ribosomes sedimented by ultracentrifugation, after preincubation with ribonuclease, show negligible contamination by crystalline enzyme. 4. Washing of ribosomes treated with ribonuclease releases further protein, restoring the original RNA/protein ratio. 5. The washed particle is again capable of promoting amino acid incorporation. 6. Examination of ribosomes treated with ribonuclease in the analytical ultracentrifuge reveals destruction of ribosomes, disappearance of dimers and a decrease in the sedimentation coefficient of monomers. 7. Washed ribosomes consist of even smaller particles with a sedimentation coefficient 60s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号