首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of protection against photo-oxidation in selected desiccation-tolerant lichens and mosses have been investigated by measuring loss of light absorption during desiccation and chlorophyll fluorescence as indicators of photoprotection. Apparent absorption (1-T) spectra measured in the reflectance mode revealed stronger absorption of photosynthetic pigments in hydrated than in desiccated organisms, but differences were pronounced only in a cyanolichen, less so in some chlorolichens, and even less in mosses. Since the amplitude of chlorophyll fluorescence is a product of (1-T) light absorption by chlorophyll and quantum yield of fluorescence, and since fluorescence is inversely related to thermal energy dissipation, when chemical fluorescence quenching is negligible, fluorescence measurements were used to measure changes in energy dissipation. Preincubation of the hydrated organisms and desiccation in darkness excluded the contribution of mechanisms of energy dissipation to photoprotection which are dependent on the presence of zeaxanthin or on the light-dependent formation of a quencher of fluorescence within the reaction centre of photosystem II. Fast drying in darkness or in very low light was less effective in decreasing chlorophyll fluorescence than slow drying. Heating the desiccated organisms increased fluorescence by inactivating the mechanism responsible for fluorescence quenching. Glutaraldehyde inhibited fluorescence quenching during desiccation. Prolonged exposure of a desiccated moss or a desiccated lichen to very strong light caused more photo-induced damage after fast drying than after slow drying. The photo-oxidative nature of damage was emphasized by the observation that irreversible loss of fluorescence was larger in air than in a nitrogen atmosphere. It is concluded from these observations that desiccation-induced conformational changes of a chlorophyll protein complex result in the fast radiationless dissipation of absorbed light energy. This mechanism of photoprotection is more effective in preventing photo-oxidative damage than other mechanisms of energy dissipation which require light for activation such as zeaxanthin-dependent energy dissipation or quencher formation within the reaction centre of photosystem II.  相似文献   

2.
Seasonal differences have been observed in the ability of desiccated mosses to dissipate absorbed light energy harmlessly into heat. During the dry summer season desiccation-tolerant mosses were more protected against photo-oxidative damage in the dry state than during the more humid winter season. Investigation of the differences revealed that phototolerance could be acquired or lost even under laboratory conditions. When a desiccated poikilohydric moss such as Rhytidiadelphus squarrosus is in the photosensitive state, the primary quinone, Q(A), in the reaction centre of photosystem II is readily reduced even by low intensity illumination as indicated by reversibly increased chlorophyll fluorescence. No such reduction is observed even under strong illumination in desiccated mosses after phototolerance has been acquired. In this state, reductive charge stabilization is replaced by energy dissipation. As a consequence, chlorophyll fluorescence is quenched. Different mechanisms are responsible for quenching. One is based on the presence of zeaxanthin provided drying occurs in the light. This mechanism is known to be controlled by a protonation reaction which is based on proton-coupled electron transport while the moss is still hydrated. Another mechanism which also requires light for activation, but no protonation, is activated during desiccation. While water is slowly lost, fluorescence is quenched. In this situation, an absorption band formed at 800 nm in the light is stabilized. It loses reversibility on darkening. Comparable kinetics of fluorescence quenching and 800 nm signals as well as the linear relationship between non-photochemical fluorescence quenching (NPQ) and loss of stable charge separation in photosystem II reaction centres suggested that desiccation-induced quenching is a property of photosystem II reaction centres. During desiccation, quenchers accumulate which are stable in the absence of water but revert to non-quenching molecular species on hydration. Together with zeaxanthin-dependent energy dissipation, desiccation-induced thermal energy dissipation protects desiccated poikilohydric mosses against photo-oxidation, ensuring survival during drought periods.  相似文献   

3.
During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs.  相似文献   

4.
* BACKGROUND AND AIMS: The ability of partial dehydration and abscisic acid pretreatments to increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon was tested. * METHODS: Net photosynthesis and respiration were measured using infrared gas analysis during a drying and rehydration cycle. At the same time, the efficiency of photosystem two was measured using chlorophyll fluorescence, and the concentrations of chlorophyll a were spectrophotometrically assayed. Heat production was also measured during a shorter drying and rehydration cycle using differential dark microcalorimetry. * KEY RESULTS: Pretreating lichens by dehydrating them to a relative water content of approx. 0.65 for 3 d, followed by storing thalli hydrated for 1 d in the light, significantly improved their ability to recover net photosynthesis during rehydration after desiccation for 15 but not 30 d. Abscisic acid pretreatment could substitute for partial dehydration. The improved rates of photosynthesis during the rehydration of pretreated material were not accompanied by preservation of photosystem two activity or chlorophyll a concentrations compared with untreated lichens. Partial dehydration and ABA pretreatments appeared to have little direct effect on the desiccation tolerance of the mycobiont, because the bursts of respiration and heat production that occurred during rehydration were similar in control and pretreated lichens. * CONCLUSIONS: Results indicate that the photobiont of P. polydactylon possesses inducible tolerance mechanisms that reduce desiccation-induced damage to carbon fixation, and will therefore improve the supply of carbohydrates to the whole thallus following stress. In this lichen, ABA is involved in signal transduction pathways that increase tolerance of the photobiont.  相似文献   

5.
Conservation of light energy in photosynthesis is possible only in hydrated photoautotrophs. It requires complex biochemistry and is limited in capacity. Charge separation in reaction centres of photosystem II initiates energy conservation but opens also the path to photooxidative damage. A main mechanism of photoprotection active in hydrated photoautotrophs is controlled by light. This is achieved by coupling light flux to the protonation of a special thylakoid protein which activates thermal energy dissipation. This mechanism facilitates the simultaneous occurrence of energy conservation and energy dissipation but cannot completely prevent damage by light. Continuous metabolic repair is required to compensate damage. More efficient photoprotection is needed by desiccation-tolerant photoautotrophs. Loss of water during desiccation activates ultra-fast energy dissipation in mosses and lichens. Desiccation-induced energy dissipation neither requires a protonation reaction nor light but photoprotection often increases when light is present during desiccation. Two different mechanisms contribute to photoprotection of desiccated photoautotrophs. One facilitates energy dissipation in the antenna of photosystem II which is faster than energy capture by functional reaction centres. When this is insufficient for full photoprotection, the other one permits energy dissipation in the reaction centres themselves.  相似文献   

6.
The relationship between photosynthetic energy conservation and thermal dissipation of light energy is considered, with emphasis on organisms which tolerate full desiccation without suffering photo-oxidative damage in strong light. As soon as water becomes available to dry poikilohydric organisms, they resume photosynthetic water oxidation. Only excess light is then thermally dissipated in mosses and chlorolichens by a mechanism depending on the protonation of a thylakoid protein and availability of zeaxanthin. Upon desiccation, another mechanism is activated which requires neither protonation nor zeaxanthin although the zeaxanthin-dependent mechanism of energy dissipation remains active, provided desiccation occurs in the light. Increased thermal energy dissipation under desiccation finds expression in the loss of variable, and in the quenching of, basal chlorophyll fluorescence. Spectroscopical analysis revealed the activity of photosystem II reaction centres in the absence of water. Oxidized beta-carotene (Car+) and reduced chlorophyll (Chl-), perhaps ChlD1 next to P680 within the D1 subunit, accumulates reversibly under very strong illumination. Although recombination between Car+ and Chl- is too slow to contribute significantly to thermal energy dissipation, a much faster reaction such as the recombination between P680+ and the neighbouring Chl- is suggested to form the molecular basis of desiccation-induced energy dissipation in photosystem II reaction centres. Thermal dissipation of absorbed light energy within a picosecond time domain deactivates excited singlet chlorophyll, thereby preventing triplet accumulation and the consequent photo-oxidative damage by singlet oxygen.  相似文献   

7.
Lichens and phototolerant poikilohydric mosses differ from spinach leaves, fern fronds or photosensitive mosses in that they show strongly decreased Fo chlorophyll fluorescence after drying. This desiccation-induced fluorescence loss is rapidly reversible under rehydration. Fluorescence emission from Photosystem II at 685 nm was decreased more strongly by dehydration than 720 nm emission. Reaction centers of Photosystem II lose activity on dehydration and regain it on hydration. Heating of desiccated lichens increased Fo chlorophyll fluorescence. The activation energy for the reversible part of the temperature-dependent fluorescence increase was 0.045 eV, which corresponds to the energy difference between the 680 and 697 nm absorption bands. In desiccated chlorolichens such as Parmelia sulcata, heating induces the appearance of positive variable fluorescence related to the reversible reduction of QA due to overcoming the energy barrier. This is interpreted to provide information on the mechanism of photoprotection: energy is dissipated by changing Chl680 or P680 into a chlorophyll form, which absorbs at 700 nm and emits light at 720 nm (Chl-720 or P680(700)) with a low quantum yield. Dissipation of light energy in this trap is activated by desiccation.  相似文献   

8.
The function of photosystem II (PSII) during desiccation was investigated via analysis of Chl a fluorescence emission in thalli from Parmelia quercina (Willd.) Vainio, Parmelia acetabulum (Necker) Duby, Ramalina farinacea (L.) Ach., Pseudevernia furfuracea (L.) Zopf., and Evernia prunastri (L.) Ach. Water loss followed the same exponential pattern in all these species, the half time being dependent on species. Desiccation affected the fluorescence parameters. Dark-adapted maximum fluorescence (Fm), instantaneous fluorescence (Fo) and the ratio of variable (Fm–Fo) to Fm were dependent on water content and decreased in two distinct phases: a slow and apparently linear phase, followed by a more steep decline at low water content. Actual PSII photochemical yield (φPSII), non-photochemical quenching (NPQ), efficiency of photon capture (φexc), and photochemical quenching (qp) remained nearly constant until 30% relative water content (RWC), decreasing rapidly thereafter. In contrast, increased NPQ appeared to occur only at water content values lower than 20%. Treatment of thalli with dithiothreitol (DTT) effectively reduced NPQ during desiccation and increased susceptibility to photoinhibition caused by exposure to high light as measured by dark recovery of the FvFm ratio. HPLC analysis showed that the level of the de-epoxidized xanthophyll cycle pigments antheraxanthin (Anth) and zeaxanthin (Zea) increased during lichen desiccation. The results point towards the existence of a photoprotective mechanism with the involvement of Zea and Anth in non-radiative dissipation of the desiccation-induced excess of energy.  相似文献   

9.
Modulated chlorophyll fluorescence was used to compare dissipation of light energy as heat in photosystem II of homoiohydric and poikilohydric photosynthetic organisms which were either hydrated or dehydrated. In hydrated chlorolichens with an alga as the photobiont, fluorescence quenching revealed a dominant mechanism of energy dissipation which was based on a protonation reaction when zeaxanthin was present. CO2 was effective as a weak protonating agent and actinic light was not necessary. In a hydrated cyanobacterial lichen, protonation by CO2 was ineffective to initiate energy dissipation. This was also true for leaves of higher plants. Thus, regulation of zeaxanthin-dependent energy dissipation by protonation was different in leaves and in chlorolichens. A mechanism of energy dissipation different from that based on zeaxanthin became apparent on dehydration of both lichens and leaves. Quenching of maximum or Fm fluorescence increased strongly during dehydration. In lichens, this was also true for so-called basal or Fo fluorescence. In contrast to zeaxanthin-dependent quenching, dehydration-induced quenching could not be inhibited by dithiothreitol. Both zeaxanthin-dependent and dehydration-induced quenching cooperated in chlorolichens to increase thermal dissipation of light energy if desiccation occurred in the light. In cyanolichens, which do not possess a zeaxanthin cycle, only desiccation-induced thermal energy dissipation was active in the dry state. Fluorescence emission spectra of chlorolichens revealed stronger desiccation-induced suppression of 685-nm fluorescence than of 720-nm fluorescence. In agreement with earlier reports of , fluorescence excitation data showed that desiccation reduced flow of excitation energy from chlorophyll b of the light harvesting complex II to emitting centres more than flow from chlorophyll a of core pigments. The data are discussed in relation to regulation and localization of thermal energy dissipation mechanisms. It is concluded that desiccation-induced fluorescence quenching of lichens results from the reversible conversion of energy-conserving to energy-dissipating photosystem II core complexes.  相似文献   

10.
Screening test on anti-oxidation activity using 1,1-diphenyl-2-picrylhydrazyl(DPPH) was performed for 99 ethanol extracts of 85 species of natural thalli of lichens in order to find novel anti-oxidation compounds.The 17 extracts of natural thalli showed high anti-oxidation activity.Among them,the activities of extracts from Hypogymnia vittata,Peltigera aphthosa,Nephromopsis ornata,Pseudevernia furfuracea,Cladonia vulcani and Peltigera elizabethae were higher.Extracts of Peltigera spp.showed higher activity than those of other genera.The ethanol extract of P.aphthosa had been separated into ethyl acetate-soluble and water-soluble fractions.Two anti-oxidative spots were found only in the water-soluble fractions by thin-layer chromatography.The compound in the lower spot had the same Rf value,UV spectrum,and color as authentic solorinine that was previously found as a unique quaternary ammonium compound from Peltigera spp.We now report that the hydrophilic lichen substance,solorinine showed a nearly same anti-oxidation activity(EC50=120?mol/Lol/L) as standard antioxidant Trolox(EC50=150?mol/L).  相似文献   

11.
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll–proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.  相似文献   

12.
Dinitrogen (N2)-fixing lichens (cyanolichens) have long been recognized as a source of exogenous N in various ecosystems, yet the effects of nitrogen inputs from these lichens have been little studied. Cyanolichens of the genus Peltigera Willd. are often the dominant members of the earth-dwelling (terricolous) cyanolichen community. They occur in diverse habitats around the globe, but no studies of their influence on soil N have been reported.
We conducted field and laboratory investigations with the primary objective of determining whether soil N availability is increased near healthy thalli of terricolous dinitrogen-fixing lichens. We measured available soil N in situ with ion-exchange resin bags, potentially mineralizable N with laboratory incubations, total soil N, and soil temperature. Measurements were taken along transects that extended away from thalli of Peltigera, perpendicular to and parallel to topographic contours. Studies were conducted in ten types of forest across northern Minnesota, including two contrasting sites that represent extremes of habitat for Peltigera.
Soil N availability, potentially mineralizable N, and soil %N increased significantly with proximity to healthy thalli of Peltigera (P-values<0.05). Moreover, potential N mineralization was highly correlated with soil %N (R2=0.765). Our results suggest a potential zone of influence that extends 1.5 m from thalli of Peltigera. The data indicate that soil temperature is not a primary factor in these associations.  相似文献   

13.
Lichen cellulase may participate in the degradation of the external substrata and/or modification of the photobiont cell wall. To promote a better understanding of the roles of cellulases in lichens, a cyanolichen was chosen because of the absence of cellulose in its symbionts. Freshly-collected thalli of Peltigera canina (L.) Wild, produce β-1,4-glucanase (EC 3.2.1.4, β-1,4-D-glucanohydrolase). This enzyme's activity was detected in the soluble and cell wall fractions and it was found to be secreted to the incubation medium when thalli were floated on water or on cellobiose. Several forms of the enzyme were detected by isoelectrofocusing. In preparative isoelectrofocusing, a single peak was obtained in each fraction, characterized by pls of 5.05, 5.25 and 4.75 in the soluble, cell wall and medium fractions, respectively. These differences were in agreement with the different pattern of bands obtained in slab-isoelectrofocusing, where the most acidic band (pl of 4.45) was present only in the soluble fraction and the band with higher pl (6.17) was more intense in the cell wall fraction. Since both symbionts in a cyanolichen lack cellulose, cellulases cannot participate in the modification of their cell wall; the presence of cellulase in Peltigera canina must therefore be related to the degradation of the tissues of the moss substratum.  相似文献   

14.
The effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light.  相似文献   

15.
The involvement of the xanthophyll cycle in photoprotection of N-deficient spinach (Spinacia oleracea L. cv Nobel) was investigated. Spinach plants were fertilized with 14 mM nitrate (control, high N) versus 0.5 mM (low N) fertilizer, and grown under both high- and low-light conditions. Plants were characterized from measurements of photosynthetic oxygen exchange and chlorophyll fluorescence, as well as carotenoid and cholorophyll analysis. Compared with the high-N plants, the low-N plants showed a lower capacity for photosynthesis and a lower chlorophyll content, as well as a lower rate of photosystem II photosynthetic electron transport and a corresponding increase in thermal energy dissipation activity measured as nonphotochemical fluorescence quenching. The low-N plants displayed a greater fraction of the total xanthophyll cycle pool as zeaxanthin and antheraxanthin at midday, and an increase in the ratio of xanthophyll cycle pigments to total chlorophyll. These results indicate that under N limitation both the light-collecting system and the photosynthetic rate decrease. However, the increased dissipation of excess energy shows that there is excess light absorbed at midday. We conclude that spinach responds to N limitation by a combination of decreased light collection and increased thermal dissipation involving the xanthophyll cycle.  相似文献   

16.
Three different types of non-photochemical de-excitation of absorbed light energy protect photosystem II of the sun- and desiccation-tolerant moss Rhytidium rugosum against photo-oxidation. The first mechanism, which is light-induced in hydrated thalli, is sensitive to inhibition by dithiothreitol. It is controlled by the protonation of a thylakoid protein. Other mechanisms are activated by desiccation. One of them permits exciton migration towards a far-red band in the antenna pigments where fast thermal deactivation takes place. This mechanism appears to be similar to a mechanism detected before in desiccated lichens. A third mechanism is based on the reversible photo-accumulation of a radical that acts as a quencher of excitation energy in reaction centres of photosystem II. On the basis of absorption changes around 800 nm, the quencher is suggested to be an oxidized chlorophyll. The data show that desiccated moss is better protected against photo-oxidative damage than hydrated moss. Slow drying of moss thalli in the light increases photo-protection more than slow drying in darkness.  相似文献   

17.
A time-resolved fluorescence study of living lichen thalli at 5 K was conducted to clarify the dynamics and mechanism of the effective dissipation of excess light energy taking place in lichen under extreme drought conditions. The decay-associated spectra obtained from the experiment at 5 K were characterized by a drastically sharpened spectral band which could not be resolved by experiments at higher temperatures. The present results indicated the existence of two distinct dissipation components of excess light energy in desiccated lichen; one is characterized as rapid fluorescence decay with a time constant of 27 ps in the far-red region that was absent in wet lichen thalli, and the other is recognized as accelerated fluorescence decay in the 685–700 nm spectral region. The former energy-dissipation component with extremely high quenching efficiency is most probably ascribed to the emergence of a rapid quenching state in the peripheral-antenna system of photosystem II (PS II) on desiccation. This is an extremely effective protection mechanism of PS II under desiccation, which lichens have developed to survive in the severely desiccated environments. The latter, which is less efficient at 5 K, might have a supplementary role and take place either in the core antenna of PS II or aggregated peripheral antenna of PS II.  相似文献   

18.
The quantity and the qualitative composition (for some species) of phenolic compounds (PC) washed out of the intact thalli of lichens of the orders Peltigerales (the genera Peltigera, Solorina, and Nephroma) and Lecanorales (the genera Cladonia, Alectoria, and Cetraria) were studied. It was shown that the quantity of leachable PCs in Peltigerales was on average 2–3 times higher than in Lecanorales. At the same time, the extractability of PC from intact thalli by water was higher in Lecanorales than in Peltigerales: 48–88% and 34–70%, respectively, of the PC content in ethanol extracts from crushed thalli (i.e., of the total content of soluble PC). Water-soluble PC in the lichens Peltigera aphthosa, Solorina crocea, Cetraria islandica, Flavocetraria nivalis, Cladonia uncialis, and Cladonia arbuscula were represented by 7–12 phenolic compounds with similar qualitative composition in the species of the same order. The most part of water soluble PC were phenylpropanoids. All of the studied species showed the presence of p-hydroxybenzoic acid derivatives; vanillic and protocatechuic acid derivatives were found in Cetraria and Cladonia species, respectively.  相似文献   

19.
Alexander Paul  Markus Hauck   《Flora》2006,201(6):451-460
Incubation with 10 mM MnCl2 for 1 h decreased the effective quantum yield of photochemical energy conversion in photosystem 2 in the bipartite chlorolichen Hypogymnia physodes as well as in the bipartite cyanolichens Leptogium saturninum and Nephroma helveticum, but not in the tripartite lichen Lobaria pulmonaria. Among the bipartite species, Mn sensitivity increased in the order H. physodes < N. helveticum < L. saturninum. This equals the sequence heteromerous chlorolichen < heteromerous cyanolichen < homoiomerous (gelatinous) cyanolichen. MnCl2 reduced non-photochemical quenching of chlorophyll fluorescence in the bipartite cyanolichens and in H. physodes; in the latter, however, this decrease was limited to light intensities above the adapted growth light intensity. Photochemical quenching was increased in H. physodes, but reduced in the bipartite cyanolichens. The results indicate that the bipartite cyanolichens L. saturninum and N. helveticum are even more sensitive to high Mn concentrations than the chlorolichen H. physodes, the low Mn tolerance of which has been already demonstrated. This agrees with results of field studies from western North America, where conifer bark under cyanolichens (including L. saturninum and N. helveticum) was found to contain less Mn than bark which only supported chlorolichens. The high sensitivity of the bipartite cyanolichens probably results from high sensitivity of the Nostoc photobiont. The high Mn tolerance of L. pulmonaria is probably not due to its being a tripartite lichen, but might be caused by high tolerance of the green-algal primary photobiont Dictyochloropsis, which is, however, not experimentally proven. The high Mn tolerance of the highly SO2-sensitive L. pulmonaria shows that different mechanisms are responsible for Mn and SO2 toxicity in lichens.  相似文献   

20.
Lichens, a symbiotic relationship between a fungus (mycobiont) and a photosynthetic green algae or cyanobacteria (photobiont), belong to an elite group of survivalist organisms termed resurrection species. When lichens are desiccated, they are photosynthetically inactive, but upon rehydration they can perform photosynthesis within seconds. Desiccation is correlated with both a loss of variable chlorophyll a fluorescence and a decrease in overall fluorescence yield. The fluorescence quenching likely reflects photoprotection mechanisms that may be based on desiccation-induced changes in lichen structure that limit light exposure to the photobiont (sunshade effect) and/or active quenching of excitation energy absorbed by the photosynthetic apparatus. To separate and quantify these possible mechanisms, we have investigated the origins of fluorescence quenching in desiccated lichens with steady-state, low temperature, and time-resolved chlorophyll fluorescence spectroscopy. We found the most dramatic target of quenching to be photosystem II (PSII), which produces negligible levels of fluorescence in desiccated lichens. We show that fluorescence decay in desiccated lichens was dominated by a short lifetime, long-wavelength component energetically coupled to PSII. Remaining fluorescence was primarily from PSI and although diminished in amplitude, PSI decay kinetics were unaffected by desiccation. The long-wavelength-quenching species was responsible for most (about 80%) of the fluorescence quenching observed in desiccated lichens; the rest of the quenching was attributed to the sunshade effect induced by structural changes in the lichen thallus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号