首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of chick interferon on the biosynthesis of glutamine synthetase (L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.2) was studied in the embryonic chick neural retina cultures induced for the enzyme activity by hydrocortisone. The retinal enzyme radioactively labelled with [3H]leucine was precipitated by specific antibody against the enzyme isolated from adult chick liver. The immunological determination offered evidence that the suppressive effect of interferon on the hormonal induction of the enzyme was primarily due to reduced rate of its synthesis and accumulation.  相似文献   

2.
Effect of chick interferon on the biosynthesis of glutamine synthetase (L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.2) was studied in the embryonic chick neural retina cultures induced for the enzyme activity by hydrocortisone. The retinal enzyme radioactively labelled with [3H]leucine was precipitated by specific antibody against the enzyme isolated from adult chick liver. The immunological determination offered evidence that the suppressive effect of interferon on the hormonal induction of the enzyme was primarily due to reduced rate of its synthesis and accumulation.  相似文献   

3.
Translation and characterization of the fatty acid synthetase messenger RNA   总被引:1,自引:0,他引:1  
Fatty acid synthetase messenger RNA was obtained from rat liver polysomal RNA and then injected into Xenopus laevis oocytes. The radioactive fatty acid synthetase protein synthesized in the oocytes was identified by immunoprecipitation with anti-fatty acid synthetase antibody and the immunoprecipitate was then characterized by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel. Co-migration of authentic fatty acid synthetase and the labeled product synthesized in oocytes was observed. Based on sucrose density gradient analysis, the rat liver fatty acid synthetase mRNA has a sedimentation coefficient of approximately 33 S, which agrees with the predicted minimum size necessary to code for the fatty acid synthetase protein. In addition, this mRNA was partially purified with oligo(dT)-cellulose, which indicates that it has a polyadenylate region. The relative in vivo rate of synthesis of fatty acid synthetase and the level of fatty acid synthetase mRNA in liver were also determined during the course of dietary induction of this enzyme. The results indicate that the dietary-induced increase in the level of fatty acid synthetase is probably due to an increased level of the fatty acid synthetase mRNA.  相似文献   

4.
We have isolated a glutamine synthetase cDNA clone derived from chicken retinal RNA. The clone detects a 3.2-kilobase RNA in chicken retina, liver, and brain, based on Northern blotting analysis. The dramatic developmental rise observed for the retinal enzyme, assayed as glutamyl transferase activity, is accompanied by a corresponding rise in this RNA. Injection of hydrocortisone 21-phosphate into the yolk sac of day 10 embryos produces an increase in retinal glutamine synthetase mRNA and glutamyl transferase activity, assayed 4 days after injection. An increase in glutamine synthetase mRNA is also observed within 2 h of incubation of retinal organ cultures with hydrocortisone. Moreover, incubation of these cultures with cycloheximide at a concentration that inhibits protein synthesis by 93% affects neither the basal level nor the hydrocortisone-mediated induction of glutamine synthetase mRNA. Although expression of this RNA is developmentally regulated in the brain, steroid hormone injection does not result in a substantial induction. Hepatic glutamine synthetase mRNA is expressed constitutively between embryonic day 10 and 6 days after hatching and is also not hormone inducible. Southern blotting data with chicken DNA digested with EcoRI, HindIII, and BamHI are best interpreted in terms of the cDNA clone detecting only one gene. If so, several cell-type-specific regulatory mechanisms must function to modulate expression of this gene during development.  相似文献   

5.
We have characterized the glucocorticoid hormone induction of glutamine synthetase mRNA in embryonic chick retinal organ cultures by quantitative dot hybridization using a cDNA clone derived from chick retinal RNA. Hydrocortisone (Kapp = 3-4 nM) and dexamethasone (Kapp = 1-2 nM) produce an approximate 30-fold increase in glutamine synthetase mRNA after incubation of organ cultures derived from embryonic day 12 retinae with either hormone for 3 hr. Progesterone is a poor inducer. The glucocorticoid-mediated rise is rapid (t1/2 = 2-3 hr) and occurs in the presence of either of the protein synthesis inhibitors cycloheximide or puromycin, indicating that the induction is a primary or direct response to the hormone. However, the magnitude of the hormonal response observed in culture increases markedly during retinal development. These observations, coupled with the previously reported absence of a hormonal induction in embryonic liver, raise the possibility of a synergistic mechanism, involving tissue-specific regulatory molecules in addition to the glucocorticoid hormone receptor, to explain the retinal-specific primary glucocorticoid hormone induction of glutamine synthetase mRNA.  相似文献   

6.
Polyadenylated mRNA was isolated from chick embryo liver following induction of hepatic porphyria. The RNA was translated in vitro using a wheat germ cell-free system and delta-aminolaevulinate synthase was identified in the translation products by indirect immunoprecipitation. The enzyme was not apparent in the translation products of polyadenylated RNA from non-induced livers. The molecular weight of delta-aminolaevulinate synthase synthesized in vitro was 70000 and the protein was estimated to represent up to 5% of total products synthesised in vitro. These data demonstrate for the first time that induction of chick embryo liver delta-aminolaevulinate synthase activity in hepatic porphyria correlates with a large increase in the translational capacity of isolated polyadenylated RNA for this enzyme and, together with preliminary cDNA . RNA hybridization studies, indicate that an increase in the level of delta-aminolaevulinic synthase mRNA is responsible.  相似文献   

7.
Astrocytes are the primary site of glutamate conversion to glutamine in the brain. We examined the effects of treatment with either dibutyryl cyclic AMP and/or the synthetic glucocorticoid dexamethasone on glutamine synthetase enzyme activity and steady-state mRNA levels in cultured neonatal rat astrocytes. Treatment of cultures with dibutyryl cyclic AMP alone (0.25 mM–1.0 mM) increased glutamine synthetase activity and steady state mRNA levels in a dose-dependent manner. Similarly, treatment with dexamethasone alone (10–7–10–5 M) increased glutamine synthetase mRNA levels and enzyme activity. When astrocytes were treated with both effectors, additive increases in glutamine synthetase activity and mRNA were obtained. However, the additive effects were observed only when the effect of dibutyryl cyclic AMP alone was not maximal. These findings suggest that the actions of these effectors are mediated at the level of mRNA accumulation. The induction of glutamine synthetase mRNA by dibutyryl cyclic AMP was dependent on protein synthesis while the dexamethasone effect was not. Glucocorticoids and cyclic AMP are known to exert their effects on gene expression by different molecular mechanisms. Possible crosstalk between these effector pathways may occur in regulation of astrocyte glutamine synthetase expression.Abbreviations used GS glutamine synthetase - dbcAMP dibutyryl cyclic AMP - MEM minimal essential medium - cyx cycloheximide - GRE glucocorticoid response element - CRE cyclic AMP response element  相似文献   

8.
Neurospora crassa glutamine synthetase mRNA was measured by its capacity to direct the synthesis of the specific protein in a cell-free system derived from rabbit reticulocytes. N. crassa cultures grown on glutamate as the sole nitrogen source had higher mRNA activities than did those grown on glutamine. The differences were about 10-fold when polysomal RNA was used for translation and about 5-fold when either total cellular RNA or polyadenylic acid-enriched cellular RNA was used. These data indicate that in exponentially growing N. crassa, the nitrogen source regulates glutamine synthetase by adjusting specific mRNA levels.  相似文献   

9.
10.
11.
The metabolism of glutamine, the main respiratory fuel of enterocytes, is governed by the activity of glutaminase and glutamine synthetase. Because starvation induces intestinal atrophy, it might alter the rate of intestinal glutamine utilization. This study examined the effect of starvation on the activity, level of mRNA, and distribution of mRNA of glutaminase and glutamine synthetase in the rat intestine. Rats were randomized into groups and were either: (1) fed for 2 days with rat food ad libitum or (2) starved for 2 days. Standardized segments of jejunum and ileum were removed for the estimation of enzyme activity, level of mRNA, and in situ hybridization analysis. The jejunum of the fed rats had a greater activity of both enzymes per centimeter of intestine (P < 0.01), a greater glutaminase specific activity (1.97 +/- 0.45 vs. 1.09 +/- 0.34 micromol/hr/mg protein, P < 0.01), and a lower level of glutaminase and glutamine synthetase mRNA. The ileum of the fed rats had a greater activity of glutamine synthetase per centimeter of intestine (162.9 +/- 50.6 vs. 91.0 +/- 23.1 nmol/hr/cm bowel, P < 0.01), a lower level of glutaminase mRNA, and a greater level of glutamine synthetase mRNA. In situ hybridization analysis showed that starvation does not alter the distribution of glutaminase and glutamine synthetase mRNA in the intestinal mucosa. This study confirms that starvation decreases the total intestinal activity per centimeter of both glutaminase and glutamine synthetase. More importantly, the results indicate that the intestine adapts to starvation by accumulating glutaminase mRNA. This process prepares the intestine for a restoration of intake.  相似文献   

12.
We report the isolation of a complimentary DNA (cDNA) clone encoding glutamine synthetase, derived from a population of methionine sulfoxime-resistant mouse GF1 fibroblasts. When GF1 cells are incubated for 48 h in the presence of the glucocorticoid hormone dexamethasone, the specific activity of glutamine synthetase (GS), assayed as glutamyltransferase activity, increases by threefold. Based on dot hybridization analysis, hormonal treatment also produces a similar increase in the level of GS mRNA. When GF1 cells or mouse Neuro 2A neuroblastoma cells are transferred from medium containing 4 mM glutamine to glutamine-free medium, glutamyltransferase activity increases by at least fivefold. However, the presence or absence or glutamine in the medium does not affect the relative level of glutamine synthetase mRNA in either cell line. With both GF1 and Neuro 2A cells, the half-time for the decline in glutamine synthetase enzyme activity on addition of glutamine to the medium is approximately 1.5 h. This rapid decline, coupled with the lack of effect of glutamine on the level of GS messenger RNA in Neuro 2A cells, renders it unlikely that neural cells alter glutamine synthetase levels in response to glutamine by a biosynthetic mechanism, as suggested by previous authors [L. Lacoste, K.D. Chaudhary, and J. Lapointe (1982) J. Neurochem. 39, 78-85].  相似文献   

13.
S H Kovacs 《In vitro》1977,13(1):24-30
Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone.  相似文献   

14.
Summary Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone. This work was supported by a National Science Foundation (U.S.A.) Training Grant.  相似文献   

15.
The total reticulocyte lysate cell-free protein-synthesizing system was incubated in the presence of Neurospora crassa RNA. With the aid of an antibody directed against purified N. crassa glutamine synthetase, the synthesis of a specific protein was detected. This protein precipitates with antiglutamine synthetase using both direct and indirect procedures, migrates with the same molecular weight as the monomer of N. crassa glutamine synthetase when subjected to acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and chromatographs as N. crassa glutamine synthetase on anthranilate-bound Sepharose. These data indicate the translation of the mRNA that codes for N. crassa glutamine synthetase. This RNA behaves as poly(A)-containing material when fractionated on oly(U)-Sepha-rose.  相似文献   

16.
Glutamine synthetase activity was investigated in developing primary astroglial cultures established from newborn mouse cerebral hemispheres. Between the 2nd and 4th week of culture there was little change in activity under our standard culturing conditions; however, when hydrocortisone (10 microM) was added to the cultures for 48 h, the enzyme activity increased two- to fourfold, depending upon the age of the culture, with maximum response in 2-week-old cultures. The addition of dibutyryl cyclic AMP (dBcAMP) to the culture medium caused morphological differentiation of the astroglial cells but eliminated the response of the cells to hydrocortisone. Culturing in elevated serum levels, which delays morphological differentiation and inhibits astroglial cytodifferentiation after exposure to dBcAMP, shifted the time of maximal response to hydrocortisone from 2 to 3 weeks and prevented the abolishment of glutamine synthetase induction by dBcAMP. The induction of glutamine synthetase by hydrocortisone was prevented by actinomycin D (0.5 microgram/ml), indicating its dependence upon RNA and protein synthesis. The present work thus confirms reports in the literature that hydrocortisone induces glutamine synthetase in neural tissues, but differs from the findings of Moscona and co-workers in the chick retina that intact tissues are required for the induction to occur.  相似文献   

17.
Pigeon liver fatty acid synthetase proteins (apo- and holo-forms) have been synthesized in a cell-free system reconstituted from polysomes and a soluble enzyme fraction. Identification of the cell-free synthesized products as fatty acid synthetase was achieved by affinity chromatography, by immuno-precipitation and by the simultaneous conversion of both the authentic carrier protein and the in vitro synthesized products from the holo- to the apo-form of the synthetase. The reverse conversion was also effected.  相似文献   

18.
Cytosine arabinoside (Ara-C) elicits a significant increase in the level of the enzyme glutamine synthetase (GS) while it markedly reduces overall RNA and protein synthesis in cultures of embryonic chick neural retina. This increase was analyzed by radioimmunochemical procedures and compared with the induction of GS by hydrocortisone (HC). Accumulation of GS in Ara-C-treated retinas was found to be due to de novo synthesis of the enzyme; however, unlike the induction of GS by HC, Ara-C caused no measurable increase in the rate of GS synthesis. The results indicate that Ara-C facilitates GS accumulation largely by preventing degradation of the enzyme. Even though Ara-C inhibits the bulk of RNA synthesis in the retina, it does not stop the formation of GS-specific RNA templates. However, the progressive accumulation of these templates does not result in an increased rate of GS synthesis unless Ara-C is withdrawn from such cultures under suitable experimental conditions. Thus, it is suggested that the continuous presence of Ara-C imposes a reversible hindrance at the translational level which limits the rate of GS synthesis. The results demonstrate that the increase in retinal GS elicited by Ara-C is achieved through mechanisms which are quite different from those involved in the hydrocortisone-mediated induction of this enzyme.  相似文献   

19.
R Gebhardt  A Ebert  G Bauer 《FEBS letters》1988,241(1-2):89-93
Using radiolabeled specific cDNA glutamine synthetase mRNA could be detected by in situ hybridization exclusively within those few perivenous hepatocytes which stained immunocytochemically for glutamine synthetase. This localization of glutamine synthetase mRNA was recently reported by Moorman et al. [(1988) J. Histochem. Cytochem. 36, 751-755]. Biotinylated cDNA was not suitable for mRNA detection because of a very high background staining under the conditions of in situ hybridization. Dot blot and Northern blot analysis of RNA isolated from periportal and perivenous subfractions of hepatocytes also demonstrated the exclusive perivenous localization of two hybridizable glutamine synthetase mRNAs of length 2.8 and 1.6 kilobases. These results indicate that the unique heterogeneity of glutamine synthetase in rat liver parenchyma is controlled at the pretranslational level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号