首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The large form of ferredoxin-NADP reductase (FNR) was treatedwith 66% iso-propyl alcohol and fractionated. The precipitatecontained the small form of FNR, which was incapable of reassociatingto the large form. The supernatant contained a new protein factorof low molecular weight. When the protein factor was isolatedfrom the supernatant and added to the small form of FNR, thelarge form of FNR was reconstituted under high salt conditions.Experimental findings indicate that the large form of FNR wascomposed of two molecules of the small form of FNR which wereconnected by a protein factor. The protein factor was purifiedby hydrophobic interaction column chromatography using butyl-Toyopearl650M and its molecular weight was determined to be about 10,000by gel filtration. It was a colorless protein with an unusualabsorption spectrum in ultra-violet regions. The protein factorwas very stable against heat but was digested by trypsin. Itwas named "Connectein" after its connective action. 1 Present address: Biotechnology Research Laboratory, Toyo SodaManufacturing Co., Ltd., Hayakawa, Ayase-shi, Kanagawa 252,Japan. 2 Present address: Nagase Biochemicals, Ltd., Osadano-cho, Fukuchiyama620, Japan. (Received November 9, 1984; Accepted February 9, 1985)  相似文献   

2.
The effect of carbonic anhydrase (CA) on time courses of photosynthetic14C incorporation in the presence of 14CO2 or NaH14CO3 was studiedwith cells of Chlamydomonas reinhardtii which had been grownunder ordinary air (low-CO2 cells) or air enriched with 4% CO2(high-CO2 cells). Experimental data obtained at 20°C andpH 8.0 suggested that the major form of inorganic carbon utilizedby high-CO2 cells was CO2, while that utilized by low-CO2 cellswas HCO3. The cell suspension showed CA activity which was comparableto that observed in the sonicate of cells. Both activities werehigher in low-CO2 cells than in high-CO2 cells. The mechanism by which HCO3 is utilized by low-CO2 cellsof C. reinhardtii is discussed. 3Present address: Department of Biology, Faculty of Science,University of Niigata, Niigata 950-21, Japan. (Received August 4, 1982; Accepted January 19, 1983)  相似文献   

3.
When 35%-acetone extract of spinach chloroplasts was separated by SDS-PAGE, ferredoxin-NADP reductase (FNR) appeared as a single band at a molecular mass of 35 kDa. After the polypeptides on the SDS-PAGE plate were electroblotted onto PVDF membrane, the FNR band was cut out and analyzed for N-terminal structure in a gas-phase protein sequencer. Two different FNR peptides were identified: one with glutamine at its N-terminus (Gln-FNR) and the other with -pyroglutamic acid (tFNR) fraction was extracted from chloroplasts with their loosely bound FNR (lFNR) fraction removed in advance. The tFNR fraction contained Gln-FNR only. The Gln-FNR could be highly purified by affinity chromatography using a ferredoxin column. The purified Gln-FNR was digested with arginyl endopeptidase for peptide mapping and partial sequence analysis. Primary structure of Gln-FNR differed from that of lFNR loosely bound FNR - tFNR tightly bound FNR - -pyroglutamic acid at N-terminus  相似文献   

4.
Activity staining with NADPH-nitroblue tetrazolium after native-PAGEof membrane proteins of Synechocystis PCC6803, solubilized with3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS),revealed four NAD(P)H dehydrogenase (NDH) activities; an NDHcomplex of the respiratory chain, a ferredoxin NADP+ reductase(FNR), a drgA product which oxidized both NADH and NADPH, andan uncharacterized NADH-specific enzyme. The NDH complex waspurified with anion exchange and gel filtration chromatographies.The purified complex had a molecular mass of 376 kDa and wascomposed of 9 subunits. Western analysis showed that the complexcontained the NDH-H subunit, but not NDH-A or B. The enzymereduced ferricyanide much faster than plastoquinone and usedNADPH as its prefered electron donor rather than NADH. The enzymaticactivity was inhibited by diphenyleneiodonium chloride and salicylhydroxamicacid, but not by rotenone, p-chloromercuribenzoate, N-ethylmaleimide,flavon, dicumarol, or antimycin A. These results suggest thatthe purified complex is a hydrophilic subcomplex which containsan NADPH binding site and flavin, and is dissociated from ahydrophobic subcomplex, which contains quinone binding site. 1Present address: Division of Applied Life Sciences, GraduateSchool of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502Japan 3Present address: Department of Biotechnology, Faculty of Engineering,Fukuyama University, 1 Gakuencho, Fukuyama, Hiroshima, 729-0292Japan  相似文献   

5.
Ferredoxin and ferredoxin-NADP+ oxidoreductase (FNR) were purified from leaves, roots, and red and green pericarp of tomato (Lycopersicon esculentum, cv VFNT and cv Momotaro). Four different ferredoxins were identified on the basis of N-terminal amino acid sequence and charge. Ferredoxins I and II were the most prevalent forms in leaves and green pericarp, and ferredoxin III was the most prevalent in roots. Red pericarp of the VFNT cv yielded variable amounts of ferredoxins II and III plus a unique form, ferredoxin IV. Red pericarp of the Momotaro cv contained ferredoxins I, II, and IV. This represents the first demonstration of ferredoxin in a chromoplast-containing tissue. There were no major differences among the tomato ferredoxins in absorption spectrum or cytochrome c reduction activity. Two forms of FNR were present in tomato as judged by anion exchange chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. FNR II had a lower apparent relative molecular weight, a slightly altered absorption spectrum, and a lower specific activity for cytochrome c reduction than FNR I. FNR II could be a partially degraded form of FNR I. The FNRs from the different tissues of tomato plants all showed diaphorase activity, with FNR II being more active than FNR I. The presence of ferredoxin and FNR in heterotrophic tissues of tomato is consistent with the existence of a nonphotosynthetic ferredoxin/FNR redox pathway to support the function of ferredoxin-dependent enzymes.  相似文献   

6.
Ribulose 1,5-bisphosphate (RuBP) carboxylase was purified fromrice leaves. By using a buffer containing 12.5% (v/v) glycerolthroughout purification, the enzyme was protected from coldlability and was obtained at a high yield (5.5 mg/g fresh wt).The purified enzyme exhibited different rates of CO2/Mg2+-activationby temperature pretreatment/storage. The purified enzyme was stable for at least one year in phosphatebuffer containing 12.5% (v/v) glycerol at 4°C or 50% (v/v)glycerol at –20°C. (Received March 1, 1983; Accepted June 27, 1983)  相似文献   

7.
8.
FNR, the gene regulator of anaerobic respiratory genes of Escherichia coli is converted in vivo by O2 and by chelating agents to an inactive state. The interconversion process was studied in vivo in a strain with temperature controlled synthesis of FNR by measuring the expression of the frd (fumarate reductase) operon and the reactivity of FNR with the alkylating agent iodoacetic acid. FNR from aerobic bacteria is, after arresting FNR synthesis and shifting to anaerobic conditions, able to activate frd expression and behaves in the alkylation assay like anaerobic FNR. After shift from anaerobic to aerobic conditions, FNR no longer activates the expression of frd and reacts similar to aerobic FNR in the alkylation assay. The conversion of aerobic (inactive) to anaerobic (active) FNR occurs in the presence of chloramphenicol, an inhibitor of protein synthesis. Anaerobic FNR can also be converted post-translationally to inactive, metal-depleted FNR by growing the bacteria in the presence of chelating agents. The reverse is also possible by incubating metal-depleted bacteria with Fe2+. From the experiments it is concluded that the aerobic and the metal-depleted form of FNR can be transferred post-translationally and reversibly to the anaerobic (active) form. The response of FNR to changes in O2 supply therefore occurs at the FNR protein level in a reversible mode.Abbreviation BVred = reduced benzyl viologen  相似文献   

9.
The electron carrier effective in nitrite reduction in proplastidsof cultured tobacco cells has been purified by DEAE-celluloseand Sephadex G-100 chromatography. Its electron carrying activityin the nitrite reduction system with dithionite showed that355 nmol NO2 reduced mg–1 protein min–1.The electron carrier had absorption maxima at 419, 459 and 469nm, and the absorbance peak at 419 nm was decreased 56% on reduction.The reduced form of the electron carrier showed an electronparamagnetic resonance signal with g=1.93. Thus, this electroncarrier is a kind of ferredoxin. It did not, however, show electroncarrying activity in the NADP-photoreduction system of chloroplasts.Its molecular weight was calculated as 19,500 by Sephadex G-100chromatography. 1Present address: Second Department of Anatomy, Fukushima MedicalCollege, Sugitsuma-cho, Fukushima 960, Japan. (Received April 11, 1983; Accepted February 6, 1984)  相似文献   

10.
UDP-glucuronate pyrophosphorylase from the pollen of Typha latifoliaLinne was purified about 600-fold by protamine sulfate treatment,ammonium sulfate fractionation, gel filtration, chromatofocusing,affinity chromatography, and isoelectric focusing. The purificationwas carried out using buffer containing 20% sucrose which helpedto prevent enzyme inactivation. This enzyme required equimolarlevels of Mg2+ to PPi or UTP for maximum velocity of enzymecatalysis. Results of experiments on product inhibition andthe initial velocity of the enzyme catalysis reaction suggesteda Theorell-Chance mechanism. 1 Present address: Japan Spectroscopic Co., 2967-5, Ishikawa-Cho,Hachioji-City, Tokyo 192, Japan. (Received April 5, 1983; Accepted September 26, 1983)  相似文献   

11.
Ferredoxin-NADP+ oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP+-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP+-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.  相似文献   

12.
Phytochrome was extracted from both light-grown and dark-grownshoots of Pisum and partially purified by brushite chromatographyand ammonium sulfate fractionation. About 160–270 ng ofphytochrome per g green tissue extracted was recovered afterthe partial purification while about 5.1–8.6 µgof phytochrome per g etiolated tissue was recovered. Only thered-light-absorbing form of phytochrome was detected in extractsprepared from both light- and dark-grown tissue, even thoughthe light-grown tissue was harvested in daylight and purificationwas done entirely at 0–4°C with only a dim green safelight. No significant differences were found between phytochromepurified from green and etiolated tissues, either in their spectralproperties or in their immunochemical reactivity against antietiolated-zucchini-phytochromeserum. 1 Permanent address: Botany Department, University of Georgia,Athens, Georgia 30602, U.S.A (Received June 10, 1981; Accepted August 6, 1981)  相似文献   

13.
Fd:NADP+ oxidoreductase (FNR) is one of the key enzymes in photosynthetic electron transport. The gene petH encoding FNR of Synechococcus sp. PCC 7002 was cloned into the expressing vector pET-3 d' and overexpressed in E. coli. The amount of recombinant FNR (rFNR) was over 50% of the total cellular proteins. There were two forms of FNR activity, one is soluble and the other one was in the form of inclusion bodies. The soluble rFNR was purified through ion exchange chromatography and gel chromatography. The rFNR in the form of inclusion bodies was first solubilized with 6.7 mol/L urea, and then refolded into the active form in the presence of flavin adenine dinucleotide (FAD). Further purification was performed by ion exchange chromatography. The rFNR pmified from either form of the expressed product had the maximum absorption spectrum as that of the natural FNR from cyanobacteria, whose maximum absorption was at 273, 385 and 456 ran respectively. N-tenninal sequencing showed that rFNR was indeed a product of petH gene expression, rFNR could catalyze the electron transport from P700 to NADP+ in the presence of ferredoxin. The optimal pH for diaphorase activity of rFNR was 8.0 and the optimal temperature was 30 ℃.  相似文献   

14.
Assimilatory nitrate reductase (NR) was solubilized by acetonetreatment from Plectonema boryanum and was purified 7,700-foldby heat treatment, ammonium sulfate fractionation and chromatographyon DEAE-Sephacel and Sephadex G-150. Purified NR had a specificactivity of 85 µmol NO2 formed min–1 mg–1protein. The enzyme retained both ferredoxin (Fd)- and methylviologen (MV)-linked NR activities throughout the purificationprocedure. Molecular weight was 80,000. The pH optimum was 10.5in the MV-assay and 8.5 when assayed with enzymatically reducedFd as the electron donor. Apparent Km values for nitrate andMV were 700 µM and 2,500µM in the MVassay and 55µM and 75 µM for nitrate and Fd in the Fd-assay.The enzyme was inhibited by thiol reagents and metal-chelatingreagents. (Received October 1, 1982; Accepted March 8, 1983)  相似文献   

15.
Uniformly 14C-labeIled glucose was fed to synchronously growingChlorella cells in the dark or in light. The rate of 14C-incorporationinto hemicellulose showed two maxima one in the growth phaseand one in the reproductive phase. Significant 14Cincorporationinto a "rigid wall" was found only in the reproductive phase. (Received April 14, 1983; Accepted June 15, 1983)  相似文献   

16.
The reduction of plastoquinone by NADPH was detected as an increasein the dark level of Chi fluorescence in osmotically rupturedchloroplasts of spinach. This activity was observed only whenthe chloroplasts were ruptured in a medium containing a highconcentration of MgCl2. The activity was suppressed by inhibitorsof the respiratory NADH dehydrogenase (NDH) complex in mitochondria,capsaicin and amobarbital, suggesting that the activity wasmediated by chloroplastic NDH complex. Antimycin A, an inhibitorof ferredoxin-quinone reductase (FQR), and the protonophorenigericin also inhibited the increase in Chi fluorescence byNADPH. By contrast, JV-ethylmaleimide (NEM), an inhibitor offerredoxin-NADP+ reductase (FNR), did not suppress the fluorescenceincrease, showing that FNR is not involved in this reaction.When the osmotically ruptured chloroplasts were washed by centrifugation,a further addition of ferredoxin as well as NADPH was requiredfor an increase in fluorescence. This ferredoxin-de-pendentactivity also was suppressed by antimycin A, but only partlyinhibited by capsaicin or amobarbital, suggesting that thisis mediated mainly by FQR. These findings suggest that the NADPH-bindingsubunit of NDH complex is easily dissociated from the thylakoidmembranes during the process of the washing the thylakoids bycentrifugation. 3Present address: Shanghai Institute of Plant Physiology, AcademiaSinica, 300 Fenglin Road, Shanghai 200032, China 5Present address: Department of Biotechnology, Faculty of Engineering,Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima, 729-02Japan  相似文献   

17.
Two ferredoxin-dependent proteins, nitrite reductase and glutamate synthase, play a role in nitrate assimilation during the anaerobic germination of rice (Oryza sativa L.). This paper reports the expression of the root form of ferredoxin-NADP+ oxidoreductase (FNR), the protein responsible for providing reduced ferredoxin in rice coleoptiles. Using an antibody against FNR, a protein with the expected molecular mass for root FNR (35 kDa) was recognized by Western blot analysis in extracts from aerobic and anaerobic coleoptiles. The enzyme is synthesized de novo, as shown by immunoprecipitation of the radiolabeled 35-kDa protein from anaerobic seedlings grown in the presence of [35S]methionine. Northern blot analysis with specific probes for root and leaf FNR showed the presence of mRNA for the root form but not for the leaf form, in both aerobic and anaerobic rice coleoptiles. The inductive effect of exogenous nitrate on the expression of FNR is further evidence for the presence of the root type of FNR in rice coleoptiles. The importance of the expression of root FNR during the anaerobic development of rice seedlings is discussed. Received: 7 October 1996 / Accepted: 22 January 1997  相似文献   

18.
A method is described for the isolation and purification of ferredoxin-NADP+ oxidoreductase (FNR, E.C. 1.18.1.2) and plastocyanin from spinach thylakoids. FNR is recovered from pools which are loosely and tightly bound to the membrane, with minimal disruption of pigment-protein complexes; yields can thus be higher than from procedures which extract only the loosely bound enzyme.Washed thylakoid membranes were incubated with the dipolar ionic detergent CHAPS (3-(3-cholamidopropyl-dimethylammonio)-1-propane-sulfonate). This provided an extract containing FNR and PC as its principal protein components, which could be rapidly separated from one another by chromatography on an anion-exchange column. FNR was purified to homogeneity (as judged from sodium dodecyl sulfate gel electrophoresis and the ratio between protein and flavin absorption maxima), using chromatography on phosphocellulose followed by batchwise adsorption to, and elution from hydroxylapatite. Plastocyanin was further purified on a Sephadex G-75 molecular sieve column.A typical yield, obtained in 3–4 days from 1 kg of deveined spinach leaves, was 7 mg of pure FNR (a single protein of Mr=37,000) and 3.5 mg of plastocyanin.Abbreviations CHAPS- 3-(3-cholamidopropyl-dimethylammonio)-1-propanesulfonate) - Chl- chlorophyll - FNR- ferredoxin-NADP+ oxidoreductase - Mops- 3-(N-morpholino) propanesulfonic acid - PC- plastocyanin - PMSF- phenylmethanesulfonylfluoride - SDS- sodium dodecyl sulfate - SDS-PAGE- sodium dodecyl sulfate polyacrylamide gel electrophoresis - Tricine- N-tris (hydroxymethyl) methylglycine  相似文献   

19.
Direct interaction of ferredoxin:NADP+ oxidoreductase (FNR) with thylakoid membranes was postulated as a part of the cyclic electron flow mechanism. In vitro binding of FNR to digalactosyldiacylglycerol and monogalactosyldiacylglycerol membranes was also shown. In this paper we deal with the latter interaction in more detail describing the effect for two FNR forms of Synechocystis PCC 6803. The so-called short FNR (sFNR) is homologous to FNR from higher plant chloroplasts. The long FNR (lFNR) form contains an additional domain, responsible for the interaction with phycobilisomes. We compare the binding of both sFNR and lFNR forms to native and non-native lipids. We also include factors which could modulate this process: pH change, temperature change, presence of ferredoxin, NADP+ and NADPH and heavy metals. For the lFNR, we also include phycobilisomes as a modulating factor. The membrane binding is generally faster at lower pH. The sFNR was binding faster than lFNR. Ferredoxin isoforms with higher midpoint potential, as well as NADPH and NADP+, weakened the binding. Charged lipids and high phosphate promoted the binding. Heavy metal ions decreased the rate of membrane binding only when FNR was preincubated with them before injection beneath the monolayer. FNR binding was limited to surface lipid groups and did not influence hydrophobic chain packing. Taken together, FNR interaction with lipids appears to be non-specific, with an electrostatic component. This suggests that the direct FNR interaction with lipids is most likely not a factor in directing electron transfer, but should be taken into account during in vitro studies.  相似文献   

20.
Characterization of NADH-dependent Fe3+-chelate reductases of maize roots   总被引:1,自引:0,他引:1  
Iron-deficient maize seedlings exhibit a starvation syndromecharacterized by an increase in different parameters such asroot fresh weight (+ 30%), protein (+ 25%) and plasma membrane-associatedNADH Fe3+ –EDTA reductase (NFR; +45%). NFR activity wasfound associated with 9 000g (20 min) and 110 000 g (1 h) sediments,purified plasma membrane and 110000 g supernatants. No differenceswere observed between the properties of reductases from Fe-starvedversus Fe-sufficient roots. The characterization of NFR wasundertaken. Low Mr forms (46 and 28 kDa, as detected by size-exclusionchromatography) were present in all fractions whereas 210 and110 kDa forms were unique in membranes and 110 000 g supernatants,respectively. The 210 kDa form was solubilized from microsomes and characterized.The enzyme is cetone-resistant and appears to be comprised largelyif not totally of the low Mr forms (46 and 28 kDa, correspondingto 30 and 32 kDa bands, respectively, in SDS-PAGE). The 210kDa form tended to break down to subunits following dilution,and the effect could be prevented by addition of 10% (v/v) glycerol.A three-step purification procedure for microsomal NFR was devised,consisting of acetone fractionation of lysophosphatidycholinesolubilized microsomes, Blue Sepharose CL-6B affinity chromatographyand a final size exclusion chromatography in the absence ofdetergent, resulting in a 700-fold purification of the 28 kDaprotein. The best electron acceptor for the purified 28 kDaform was ferricyanide (400µmol min–1mg–1 protein)followed by Fe3+–chelates (up to 200µol min–1mg–1 protein) and other compounds to a lesser extent (cytc, DCPIP).The 46 kDa form, on the other hand, had high ferricyanidereductase activity (about 300µmol min–1mg–1protein) and relatively low Fe3+–chelate reductase activity.The properties of NFR (high M, active forms, donor and acceptorspecificity, purification behaviour, large hydrophilic domains,size of subunits) suggest a relationship with the NADH-cyt b5reductase family of FAD-containing proteins. None of the latterflavoproteins is a transmembrane enzyme. Key words: Maize roots, Fe3+–reductase, ferricyanide reductase, iron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号