首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Abstract Peptide synthetases are large multienzyme complexes that catalyze the non-ribosomal synthesis of a structurally diverse family of bioactive peptides. They possess a multidomain structure and employ the thiotemplate mechanism to activate, modify and link together by amide or ester bonds the constituent amino acids of the peptide product. The domains, which represent the functional building units of peptide synthetases, appear to act as independent enzymes whose specific linkage order forms the protein-template that defines the sequence of the incorporated amino acids. Two types of domains have been characterized in peptide synthetases of bacterial and fungal origin: type I comprises about 600 amino acids and contains at least two modules involved in substrate recognition, adenylation and thioester formation, whereas type II domains carry in addition an insertion of about 430 amino acids that may function as a N-methyltransferase module. The role of other genes associated with bacterial opérons encoding peptide synthetases is also discussed.  相似文献   

2.
Analysis of the primary structure of peptide synthetases involved in the non-ribosomal synthesis of peptide antibiotics has revealed a highly conserved and ordered modular arrangement. A module contains at least two domains, involved in ATP-dependent substrate activation and thioester formation. The occurrence and arrangement of these functional building blocks is associated with the number and order of the amino acids incorporated in the peptide product. In this study, we present data on the targeted exchange of the leucine-activating module within the three-module surfactin synthetase 1 (SrfA-A) of Bacillus subtilis. This was achieved by engineering several hybrid srfA-A genes, which were introduced into the surfactin biosynthesis operon by in vivo recombination. We examined the hybrid genes for expression and investigated the enzymatic activities of the resulting recombinant peptide synthetases. For the first time, we demonstrate directly that an individual minimal module, of bacterial or fungal origin, confers its amino acid-specific activity on a multi-modular peptide synthetase. Furthermore, it is shown that directed incorporation of ornithine at the second position of the peptide chain induces a global alteration in the conformation of surfactin and may result in premature cyclization or a branched cyclic structure. Received: 10 July 1997 / Accepted: 11 September 1997  相似文献   

3.
Abstract Toxic strains of Microcystis aeruginosa produce cyclic heptatoxins (microcystins) that are believed to be synthesized non-ribosomally by peptide synthetases. We analysed toxin-producing and non-toxic strains of M. aeruginosa with respect to the presence of DNA sequences potentially encoding peptide synthetases. Hybridizations of genomic DNA of various M. aeruginosa strains with PCR-amplificated fragments possessing homologies to adenylate-forming domains of peptide synthetase genes provided first evidence for the existence of corresponding genes in cyanobacteria. Furthermore we isolated and sequenced from genomic libraries overlapping fragments of M. aeruginosa DNA with a total length of 2982 bp showing significant homology to genes encoding peptide synthetases and hybridizing exclusively with DNA from toxic strains. Our results indicate that both toxic and non-toxic strains of M. aeruginosa possess genes coding for peptide synthetases and that hepatotoxin-producing and non-toxic strains differ in their content of genes for specific peptide synthetases.  相似文献   

4.
Next to almost all prokaryotic operons encoding peptide synthetases, which are involved in the nonribosomal synthesis of peptide antibiotics, distinct genes have been detected that encode proteins with strong sequence similarity to type II fatty acid thioesterases of vertebrate origin. Furthermore, sequence analysis of bacterial and fungal peptide synthetases has revealed a region at the C-terminal end of modules that are responsible for adding the last amino acid to the peptide antibiotics; that region also exhibits significant similarities to thioesterases. In order to investigate the function of these putative thioesterases in non-ribosomal peptide synthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis, srfA fragments encoding the thioesterase domain of the surfactin synthetase 3 and the thioesterase-like protein SrfA-TE were deleted. This led to a 97 and 84% reduction of the in vivo surfactin production, respectively. In the double mutant, however, no surfaction production was detectable. These findings demonstrate for the first time that the C-terminal thioesterase domains and the SrfA-TE protein are directly involved in nonribosomal peptide biosynthesis. Received: 30 September 1997 / Accepted: 4 December 1997  相似文献   

5.
NAD+-synthetase is a ubiquitous enzyme catalyzing the last step in the biosynthesis of NAD+. Mutants of NAD+ synthetase with impaired cellular functions have been isolated, indicating a key role for this enzyme in cellular metabolism. Crystals of the enzyme from Bacillus subtilis suitable for x-ray crystallographic investigation have been grown from polyethylene glycol solutions. Investigation on the structural organization of NAD+ synthetase, an enzyme fundamental for NAD+ biosynthesis, and belonging to the recently characterized amidotransferase enzymatic family, will provide more insight into the catalytic mechanism of deamido-NAD+ → NAD+ conversion, a biosynthetic process that is a potential target for the development of antibiotic compounds against Bacillus sp. and related bacteria. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.  相似文献   

7.
Little is known about the process whereby the emetic toxin (or cereulide) of Bacillus cereus is produced. Two cereulide-producing strains of B. cereus were cloned and sequenced following polymerase chain reaction (PCR) amplification with primers that were specific for conserved regions of non-ribosomal peptide synthetase (NRPS) genes. The cloned regions of the B. cereus strains were highly homologous to conserved regions of other peptide synthetase nucleotide sequences. Primers were designed for two variable regions of the NRPS gene sequence to ensure specificity for the emetic strains. A total of 86 B. cereus strains of known emetic or non-emetic activity were screened using these primers. All of the emetic strains (n=30) displayed a 188 bp band following amplification and gel electrophoresis. We have developed an improved method of identifying emetic strains of B. cereus and provided evidence that cereulide is produced by peptide synthetases.  相似文献   

8.
Summary Aminoacyl-tRNA synthetases are important components of the genetic apparatus. In spite of common catalytic properties, synthetases with different amino acid specificities are widely diverse in their primary structures, subunit sizes, and subunit composition. However, synthetases with given amino acid specificities are well conserved throughout evolution. We have been studying the human glutaminyl-tRNA synthetase possessing a sequence of about 400 amino acid residues (the core region) that is very similar to sequences in the corresponding enzymes from bacteria and yeast. The conserved sequence appears to be essential for the basic function of the enzyme, the charging of tRNA with glutamine. As a first step to a better understanding of the evolution of this enzyme, we determined the coding region for the conserved part of the human glutaminyl-tRNA synthetase. The coding region is composed of eight exons. It appears that individual exons encode defined secondary structural elements as parts of functionally important domains of the enzyme. Evolution of the gene by assembly of individual exons seems to be a viable hypothesis; alternative pathways are discussed. Offprint requests to: R. Knippers  相似文献   

9.
A major obstacle in investigating the biosynthesis of pharmacologically important peptide antibiotics is the heterologous expression of the giant biosynthetic genes. Recently, the genetically engineered strain Bacillus subtilis KE30 has been reported as an excellent surrogate host for the heterologous expression of an entire nonribosomal peptide synthetase (NRPS) gene cluster. In this study, we expand the applicability of this strain, by the development of four Escherichia coli/B. subtilis shuttle expression vectors. Comparative overproduction of hybrid NRPS proteins derived from both organisms revealed a significant beneficial effect of overproducing proteins in B. subtilis KE30 as underlined by the production of stable nondegradative proteins, as well as the formation of active phosphopantetheinylated holo-proteins.  相似文献   

10.
Microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTG) has been used in many industrial applications because it effectively catalyzes the formation of covalent cross-linking between glutamine residues in various substrate proteins and lysine residues or primary amines. To better understand the sequence preference around the reactive glutamine residue by this enzymatic reaction, we screened preferred peptide sequences using a phage-displayed random peptide library. Most of the peptides identified contained a consensus sequence, which was different from those previously found for mammalian TGases. Of these, most sequences had a specific reactivity toward MTG when produced as a fusion protein with glutathione-S-transferase. Furthermore, the representative sequence was found to be reactive even in the peptide form. The amino acid residues in the sequence critical for the reactivity were further analyzed, and the possible interaction with the enzyme has been discussed in this paper.  相似文献   

11.
Some of the secondary metabolites produced by Trichoderma, such as the peptaibols and other antibiotics, have a peptide structure and in their biosynthesis are involved proteins belonging to the Non-Ribosomal Peptide Synthetase family. In the present work, a PCR-mediated strategy was used to clone a region corresponding to an adenylation domain of a peptide synthetase (PS) gene from 10 different strains of Trichoderma. In addition, and using the fragment isolated by PCR from T. harzianum CECT 2413 as a probe, a fragment of 19.0 kb corresponding to a PS-encoding gene named salps1, including a 1.5 kb fragment of the promoter, was cloned and sequenced. The cloned region of salps1 contains four complete, and a fifth incomplete, modules, in which are found the adenylation, thiolation and condensation domains, but also an additional epimerization domain at the C-terminal end of the first module. The analysis of the Salps1 protein sequence, taking into consideration published data, suggests that it is neither a peptaibol synthetase nor a protein involved in siderophore biosynthesis. The presence of two breaks in the open reading frame and the expression of this gene under nitrogen starvation conditions suggest that salps1 could be a pseudogene.  相似文献   

12.
We found that a peptide (EP3a: TIKALVSRCRAKAAV) corresponding to the N-terminal site of the intracellular third loop of human prostaglandin EP3α receptor could activate G protein α-subunit directly. The activity was almost same as Mastoparan-X, a G protein activating peptide from wasp venom. The three-dimensional molecular structure of the peptide in SDS-d25 micelles was determined by 2D 1H NMR spectroscopy. The structure of EP3a consists of a positive charge cluster on the C-terminal helical site. The cluster was also found in several corresponding receptor peptides. Therefore, the positive charge cluster on the helical structure might play a crucial role in activation of G protein.  相似文献   

13.
In our previous study, spiny head croaker (Collichthys lucidus) by-products fermentation (SBF) products demonstrated plant growth promoting effects. In this study, the antimicrobial activities of SBF against plant pathogenic fungi and food-borne bacteria were evaluated. An active antifungal fraction SBF-3-1 was isolated from SBF using size exclusion chromatography and high performance liquid chromatography. Seven short peptides, i.e., LDEGW, DSFDFK, LDGW, FPDL, YNLDFK, FDGF and LDFE, plus one 22 residues peptide TFNTPAMYVAIQAVLSLYASGR were identified in SBF-3-1 by liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI-Q-TOF-MS/MS). The peptide TFNTPAMYVAIQAVLSLYASGR (named as SBF-3-1p), a potential antimicrobial peptide predicted by the antimicrobial peptide database (APD, http://aps.unmc.edu/AP/main.php), was further characterized. The prediction showed that the generation of SBF-3-1p could be associated with the action of trypsin and glutamyl endopeptidase, two proteases with specific cleavage sites on the carboxyl side of arginine (R) and lysine (K), and on the carboxyl side of Glu (E), respectively. According to the structural modeling, SBF-3-1p contained one α-helix and two loop regions. The synthesized SBF-3-1p exhibited strong activity against plant pathogenic fungus Pestalotiopsis sp. Therefore, SBF should be a good source of antifungal peptide, and could be used as natural fungicides in agriculture.  相似文献   

14.
15.
Peptides were synthesized with very high purity and yield on a highly solvating copolymer of 1,4-butanediol dimethacrylate cross-linked polystyrene support (PS-BDODMA). The polymer was synthesized by radical aqueous suspension polymerization using toluene as the diluent and 1% polyvinyl alcohol as the suspension stabilizer. The supports were highly resistant to various chemical reagents and solvents that are frequently used in polypeptide synthesis. The peptides synthesized on this support were designed from the core (C), envelope (E1 and E2) and nonstructural protein (NS1-NS5) regions of the prototype hepatitis C viral (HCV) polyprotein, and were used to develop a peptide-based immunoassay (PBEIA) for the detection of HCV antibodies. The purity of these peptides was tested by HPLC. Peptide identity was confirmed by amino acid analysis and MALDI-TOF-MS. A single peptide chosen from a conserved area (E2/NS1) at the C-terminus of the hypervariable region (HVRI) was found to be sufficient for effective and reliable diagnosis of HCV infection in infected individuals, as well as also apparently healthy individuals. The CD spectrum of the peptide shows no preference for any ordered secondary structure. When used, peptide mixtures from various protein regions of HCV reduced the sensitivity and reliability of the diagnosis partly because of epitope masking.  相似文献   

16.
17.
Abstract: Rhizobium meliloti strain GR4 is a highly infective and competitive bacteria which was isolated in 1975 from a field site in Granada (Spain) and which has a high potential as an inoculant. R. meliloti isolates from alfalfa plants grown in this field site were characterized using polymerase chain reaction. Characterization was based on primers derived from insertion sequence elements (IS Rm3 and IS Rm4 ), plasmid origin of replication (pRmeGR4a repC locus) and plasmid pRmeGR4b specific DNA sequences. Soil isolates harbouring plasmid type pRmeGR4b represented the major infective population in this field site. A direct correlation between the presence of pRmeGR4b-like plasmid and the competitiveness of the strains was found. In addition, four different R. meliloti field populations isolated from Spanish soils were analyzed for the presence of pRmeGR4b related plasmids. Our results indicate that this plasmid type is widespread among R. meliloti field populations and that its frequency within the infective isolates depends on the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号