首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Konev AY  Yan CM  Acevedo D  Kennedy C  Ward E  Lim A  Tickoo S  Karpen GH 《Genetics》2003,165(4):2039-2053
Heterochromatin is a major component of higher eukaryotic genomes, but progress in understanding the molecular structure and composition of heterochromatin has lagged behind the production of relatively complete euchromatic genome sequences. The introduction of single-copy molecular-genetic entry points can greatly facilitate structure and sequence analysis of heterochromatic regions that are rich in repeated DNA. In this study, we report the isolation of 502 new P-element insertions into Drosophila melanogaster centric heterochromatin, generated in nine different genetic screens that relied on mosaic silencing (position-effect variegation, or PEV) of the yellow gene present in the transposon. The highest frequencies of recovery of variegating insertions were observed when centric insertions were used as the source for mobilization. We propose that the increased recovery of variegating insertions from heterochromatic starting sites may result from the physical proximity of different heterochromatic regions in germline nuclei or from the association of mobilizing elements with heterochromatin proteins. High frequencies of variegating insertions were also recovered when a potent suppressor of PEV (an extra Y chromosome) was present in both the mobilization and selection generations, presumably due to the effects of chromatin structure on P-element mobilization, insertion, and phenotypic selection. Finally, fewer variegating insertions were recovered after mobilization in females, in comparison to males, which may reflect differences in heterochromatin structure in the female and male germlines. FISH localization of a subset of the insertions confirmed that 98% of the variegating lines contain heterochromatic insertions and that these schemes produce a broader distribution of insertion sites. The results of these schemes have identified the most efficient methods for generating centric heterochromatin P insertions. In addition, the large collection of insertions produced by these screens provides molecular-genetic entry points for mapping, sequencing, and functional analysis of Drosophila heterochromatin.  相似文献   

2.
DNA sequences within heterochromatin are often selectively underrepresented during development of polyploid chromosomes, and DNA molecules of altered structure are predicted to form as a consequence of the underrepresentation process. We have identified heterochromatic DNAs of altered structure within sequences that are underrepresented in polyploid cells of Drosophila melanogaster. Specifically, restriction fragments that extend into centric heterochromatin of the minichromosome Dp(1;f)1187 are shortened in polyploid cells of both the ovary and salivary gland but not in the predominantly diploid cells of the embryo or larval imaginal discs and brains. Shortened DNA molecules were also identified within heterochromatic sequences of chromosome III. These results suggest that the structure of heterochromatic DNA is altered as a general consequence of polyploid chromosome formation and that the shortened molecules identified form as a consequence of heterochromatic underrepresentation. Finally, alteration of heterochromatic DNA structure on Dp(1;f)1187 was not correlated with changes in the variegated expression of the yellow gene located on the minichromosome.  相似文献   

3.
We investigated whether single P element insertional mutagenesis could be used to analyze heterochromatin within the Drosophila minichromosome Dp1187. Forty-five insertions of the P[lacZ,rosy+] element onto Dp1187 (recovered among 7,825 transpositions) were highly clustered. None was recovered in centromeric heterochromatin, but 39 occurred about 40 kb from the distal telomere within a 4.7-kb hotspot containing tandem copies of a novel 1.8-kb repetitive DNA sequence. The DNA within and distal to this region lacked essential genes and displayed several other properties characteristic of heterochromatin. The rosy+ genes within the inserted transposons were inhibited by position-effect variegation, and the subtelomeric region was underrepresented in polytene salivary gland cells. These experiments demonstrated that P elements preferentially transpose into a small subset of heterochromatic sites, providing a versatile method for studying the structure and function of these chromosome regions. This approach revealed that a Drosophila chromosome contains a large region of subtelomeric heterochromatin with specific structural and genetic properties.  相似文献   

4.
5.
The white gene within the transposon A(R)4-24P[white,rosy] inserted at cytological location 24D1-2 in the euchromatic portion of the Drosophila melanogaster genome exhibits a mosaic pattern of expression which is modified by temperature and Y-chromosome number, as in cases of classical position-effect variegation (PEV). The eye colour of the flies in this variegated stock remains mosaic in the presence of the PEV modifier Su(var)3-6, slightly less so with Su(var)3-9 and Su(var)2-5, and full suppression of variegation occurs in the presence of Su(var)3-7. We have induced further transposition of A(R)4-24 and isolated two mosaic stocks with this transgene at new cytological locations. In these stocks, the A(R)4-24 transposon was flanked by the same genomic DNA fragments as in the original location. Spontaneous loss of these fragments leads to reversion of the variegated eye colour to wild-type. We suggest that the flanking DNA fragments from 24D1-2 are capable of inducing position-effect variegation without any association with centromeric heterochromatin. In situ hybridisation and Southern analysis demonstrate that the 5' flanking genomic fragment contains repeated sequences which are abundantly present in heterochromatin.  相似文献   

6.
Rice (Oryza sativa) is one of three predominant grain crops, and its nuclear and organelle genomes have been sequenced. Following genome analysis revealed many exchanges of DNA sequences between the nuclear and organelle genomes. In this study, a total of 45 chloroplast DNA insertions more than 2 kb in length were detected in rice nuclear genome. A homologous recombination mechanism is expected for those chloroplast insertions with high similarity between their flanking sequences. Only five chloroplast insertions with high sequence similarity between two flanking sequences from an insertion were found in the 45 insertions, suggesting that rice might follow the non-homologous end-joining (NHEJ) repair of double-stranded breaks mechanism, which is suggested to be common to all eukaryotes. Our studies indicate that the most chloroplast insertions occurred at a nuclear region characterized by a sharp change of repetitive sequence density. One potential explanation is that regions such as this might be susceptible target sites or “hotspots” of DNA damage. Our results also suggest that the insertion of retrotransposon elements or non-chloroplast DNA into chloroplast DNA insertions may contribute significantly to their fragmentation process. Moreover, based on chloroplast insertions in nuclear genomes of two subspecies (indica and japonica) of cultivated rice, our results strongly suggest that they diverged during 0.06–0.22 million years ago. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
M. H. Le  D. Duricka    G. H. Karpen 《Genetics》1995,141(1):283-303
Heterochromatin is a ubiquitous yet poorly understood component of multicellular eukaryotic genomes. Major gaps exist in our knowledge of the nature and overall organization of DNA sequences present in heterochromatin. We have investigated the molecular structure of the 1 Mb of centric heterochromatin in the Drosophila minichromosome Dp1187. A genetic screen of irradiated minichromosomes yielded rearranged derivatives of Dp1187 whose structures were determined by pulsed-field Southern analysis and PCR. Three Dp1187 deletion derivatives and an inversion had one breakpoint in the euchromatin and one in the heterochromatin, providing direct molecular access to previously inaccessible parts of the heterochromatin. End-probed pulsed-field restriction mapping revealed the presence of at least three ``islands' of complex DNA, Tahiti, Moorea, and Bora Bora, constituting approximately one half of the Dp1187 heterochromatin. Pulsed-field Southern analysis demonstrated that Drosophila heterochromatin in general is composed of alternating blocks of complex DNA and simple satellite DNA. Cloning and sequencing of a small part of one island, Tahiti, demonstrated the presence of a retroposon. The implications of these findings to heterochromatin structure and function are discussed.  相似文献   

8.
9.
Wayne R Carlson 《Génome》2006,49(5):420-431
The B chromosome of maize undergoes frequent non-disjunction at the second pollen mitosis. In B-A translocations, the B-A chromosome retains the capacity for non-disjunction. We have collected deletion-derivative TB-9Sb stocks. One derivative, the "type 1 telocentric", has a B-9 chromosome that lacks centric heterochromatin. It produces few recessive (non-disjunctional) phenotypes in pollen parent testcrosses of the translocation heterozygote, 9 9-B telo B-9. The finding helped demonstrate the role of centric heterochromatin in non-disjunction. An isochromo some derivative of the type 1 telocentric was also recovered. It was tested in the 9-B 9-B iso B-9 constitution. This is equivalent to 9 9-B telo B-9 in terms of chromosome 9 dosage. Surprisingly, crosses with the isochromosome gave significant levels of recessive phenotypes. In addition, high levels of variegated phenotypes were found. Recently, a circumstance was found that makes inheritance of the type 1 telocentric chromosome somewhat similar to that of the isochromosome. Crosses with hypoploid 9-B 9-B telo B-9 plants showed significant levels of recessive and variegated phenotypes. These crosses were investigated to help explain the source(s) of the phenotypes. Cytological and genetic studies were performed. Centric misdivision was found to account for the variegated phenotypes. A mixture of conventional B non-disjunction and centric misdivision produced the recessive phenotypes. The significance of conventional non-disjunction in the absence of centric heterochromatin is discussed.  相似文献   

10.
Because retrotransposons are the major component of plant genomes, analysis of the target site selection of retrotransposons is important for understanding the structure and evolution of plant genomes. Here, we examined the target site specificity of the rice retrotransposon Tos17, which can be activated by tissue culture. We have produced 47,196 Tos17-induced insertion mutants of rice. This mutant population carries approximately 500,000 insertions. We analyzed >42,000 flanking sequences of newly transposed Tos17 copies from 4316 mutant lines. More than 20,000 unique loci were assigned on the rice genomic sequence. Analysis of these sequences showed that insertion events are three times more frequent in genic regions than in intergenic regions. Consistent with this result, Tos17 was shown to prefer gene-dense regions over centromeric heterochromatin regions. Analysis of insertion target sequences revealed a palindromic consensus sequence, ANGTT-TSD-AACNT, flanking the 5-bp target site duplication. Although insertion targets are distributed throughout the chromosomes, they tend to cluster, and 76% of the clusters are located in genic regions. The mechanisms of target site selection by Tos17, the utility of the mutant lines, and the knockout gene database are discussed. --The nucleotide sequence data were uploaded to the DDBJ, EMBL, and GenBank nucleotide sequence databases under accession numbers AG020727 to AG025611 and AG205093 to AG215049.  相似文献   

11.
Mugnier N  Gueguen L  Vieira C  Biémont C 《Gene》2008,411(1-2):87-93
Transposable elements, which are major components of most genomes, are known to accumulate in heterochromatic regions in which they have progressively diverged in sequence by mutations and internal deletions and insertions (indels) during the course of evolution. They therefore provide a record of the genomic events that have shaped the genomes, some of which could correspond to speciation events. Using the sequence divergence between the long terminal repeats (LTRs), we estimated the date of the insertion events of the LTR retrotransposon copies embedded within the heterochromatin regions of the Drosophila melanogaster genome. We did not detect traces of any specific waves of mobilization of retrotransposons within heterochromatin, apart from a very recent wave, which corresponds to the numerous LTR retrotransposon copies found in euchromatin.  相似文献   

12.
The tendency for Ac to transpose over short intervals has been utilized to develop insertional mutagenesis and fine structure genetic mapping strategies in maize. We recovered excisions of Ac from the P gene and insertions into nearby chromosomal sites. These closely linked Ac elements reinserted into the P gene, reconstituting over 250 unstable variegated alleles. Reconstituted alleles condition a variety of variegation patterns that reflect the position and orientation of Ac within the P gene. Molecular mapping and DNA sequence analyses have shown that reinsertion sites are dispersed throughout a 12.3-kb chromosomal region in the promoter, exons and introns of the P gene, but in some regions insertions sites were clustered in a nonrandom fashion. Transposition profiles and target site sequence data obtained from these studies have revealed several features of Ac transposition including its preference for certain target sites. These results clearly demonstrate the tendency of Ac to transpose to nearby sites in both proximal and distal directions from the donor site. With minor modifications, reconstitutional mutagenesis should be applicable to many Ac-induced mutations in maize and in other plant species and can possibly be extended to other eukaryotic transposon systems as well.  相似文献   

13.

Background

Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly.

Results

WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm.

Conclusions

Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.  相似文献   

14.
Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800–1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences.  相似文献   

15.
Microsatellites are widely distributed in plant genomes and comprise unstable regions that undergo mutational changes at rates much greater than that observed for non-repetitive sequences. They demonstrate intrinsic genetic instability, manifested as frequent length changes due to insertions or deletions of repeat units. Detailed analysis of 1600 clones containing genomic sequences of Vicia bithynica revealed the presence of microsatellite repeats in its genome. Based on the screening of a partial DNA library of plasmids, 13 clones harbouring (GA/TC)n tracts of various lengths of repeated motif were identified for further analysis of their internal sequence organization. Sequence analyses revealed the precise length, number of repeats, interruptions within tracts, as well as sequence composition flanking the repeat motifs. Representative plasmids containing different lengths of (GA/TC)n embedded in their original flanking sequence were used to investigate the genetic stability of the repeats. In the study presented herein, we employed a well characterised and tractable bacterial genetic system. Recultivations of Escherichia coli harbouring plasmids containing (GA/TC)n inserts demonstrated that the genetic instability of (GA/TC)n microsatellites depends highly on their length (number of repeats). These observations are in agreement with similar studies performed on repetitive sequences from humans and other organisms.  相似文献   

16.
B. Dalby  A. J. Pereira    LSB. Goldstein 《Genetics》1995,139(2):757-766
We developed a screening approach that utilizes an inverse polymerase chain reaction (PCR) to detect P element insertions in or near previously cloned genes in Drosophila melanogaster. We used this approach in a large scale genetic screen in which P elements were mobilized from sites on the X chromosome to new autosomal locations. Mutagenized flies were combined in pools, and our screening approach was used to generate probes corresponding to the sequences flanking each site of insertion. These probes then were used for hybridization to cloned genomic intervals, allowing individuals carrying insertions in them to be detected. We used the same approach to perform repeated rounds of sib-selection to generate stable insertion lines. We screened 16,100 insert bearing individuals and recovered 11 insertions in five intervals containing genes encoding members of the kinesin superfamily in Drosophila melanogaster. In addition, we recovered an insertion in the region including the Larval Serum Protein-2 gene. Examination by Southern hybridization confirms that the lines we recovered represent genuine insertions in the corresponding genomic intervals. Our data indicates that this approach will be very efficient both for P element mutagenesis of new genomic regions and for detection and recovery of ``local' P element transposition events. In addition, our data constitutes a survey of preferred P element insertion sites in the Drosophila genome and suggests that insertion sites that are mutable at a rate of ~10(-4) are distributed every 40-50 kb.  相似文献   

17.
P. Zhang  A. C. Spradling 《Genetics》1995,139(2):659-670
Peri-centromeric regions of Drosophila melanogaster chromosomes appear heterochromatic in mitotic cells and become greatly underrepresented in giant polytene chromosomes, where they aggregate into a central mass called the chromocenter. We used P elements inserted at sites dispersed throughout much of the mitotic heterochromatin to analyze the fate of 31 individual sites during polytenization. Analysis of DNA sequences flanking many of these elements revealed that middle repetitive or unique sequence DNAs frequently are interspersed with satellite DNAs in mitotic heterochromatin. All nine Y chromosome sites tested were underrepresented >20-fold on Southern blots of polytene DNA and were rarely or never detected by in situ hybridization to salivary gland chromosomes. In contrast, nine tested insertions in autosomal centromeric heterochromatin were represented fully in salivary gland DNA, despite the fact that at least six were located proximal to known blocks of satellite DNA. The inserted sequences formed diverse, site-specific morphologies in the chromocenter of salivary gland chromosomes, suggesting that domains dispersed at multiple sites in the centromeric heterochromatin of mitotic chromosomes contribute to polytene β-heterochromatin. We suggest that regions containing heterochromatic genes are organized into dispersed chromatin configurations that are important for their function in vivo.  相似文献   

18.
The L1 Ta subfamily of long interspersed elements (LINEs) consists exclusively of human-specific L1 elements. Polymerase chain reaction-based screening in nonhuman primate genomes of the orthologous sites for 249 human L1 Ta elements resulted in the recovery of various types of sequence variants for approximately 12% of these loci. Sequence analysis was employed to capture the nature of the observed variation and to determine the levels of gene conversion and insertion site homoplasy associated with LINE elements. Half of the orthologous loci differed from the predicted sizes due to localized sequence variants that occurred as a result of common mutational processes in ancestral sequences, often including regions containing simple sequence repeats. Additional sequence variation included genomic deletions that occurred upon L1 insertion, as well as successive mobile element insertions that accumulated within a single locus over evolutionary time. Parallel independent mobile element insertions at orthologous loci in distinct species may introduce homoplasy into retroelement-based phylogenetic and population genetic data. We estimate the overall frequency of parallel independent insertion events at L1 insertion sites in seven different primate species to be very low (0.52%). In addition, no cases of insertion site homoplasy involved the integration of a second L1 element at any of the loci, but rather largely involved secondary insertions of Alu elements. No independent mobile element insertion events were found at orthologous loci in the human and chimpanzee genomes. Therefore, L1 insertion polymorphisms appear to be essentially homoplasy free characters well suited for the study of population genetics and phylogenetic relationships within closely related species.  相似文献   

19.
Toxigenic strains of Pasteurella multocida produce a 146 kDa toxin (PMT) that acts as a potent mitogen. Sequence analysis of the structural gene for PMT, toxA, previously suggested it was horizontally acquired, because it had a low G + C content relative to the P. multocida genome. To address this, the sequence of DNA flanking toxA was determined. The sequence analysis showed the presence of homologues to bacteriophage tail protein genes and a bacteriophage antirepressor, suggesting that the toxin gene resides within a prophage. In addition to phage genes, the toxA flanking DNA contained a homologue of a restriction/modification system that was shown to be functional. The presence of a bacteriophage was demonstrated in spent medium from toxigenic P. multocida isolates. Its production was increased by mitomycin C addition, a treatment that is known to induce the lytic cycle of many temperate bacteriophages. The genomes of bacteriophages from three different toxigenic P. multocida strains had similar but not identical restriction profiles, and were approximately 45-50 kb in length. The prophages from two of these had integrated at the same site in the chromosome, in a tRNA gene. Southern blot analysis confirmed that these bacteriophages contained the toxA gene.  相似文献   

20.
Evolution of gene sequence in response to chromosomal location   总被引:3,自引:0,他引:3       下载免费PDF全文
Díaz-Castillo C  Golic KG 《Genetics》2007,177(1):359-374
Evolutionary forces acting on the repetitive DNA of heterochromatin are not constrained by the same considerations that apply to protein-coding genes. Consequently, such sequences are subject to rapid evolutionary change. By examining the Troponin C gene family of Drosophila melanogaster, which has euchromatic and heterochromatic members, we find that protein-coding genes also evolve in response to their chromosomal location. The heterochromatic members of the family show a reduced CG content and increased variation in DNA sequence. We show that the CG reduction applies broadly to the protein-coding sequences of genes located at the heterochromatin:euchromatin interface, with a very strong correlation between CG content and the distance from centric heterochromatin. We also observe a similar trend in the transition from telomeric heterochromatin to euchromatin. We propose that the methylation of DNA is one of the forces driving this sequence evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号