首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous computer analyses suggested two possible lipid binding sites, residues 49-71 and 131-155, of the primary amino acid sequence on ABP-280 (filamin), which could facilitate membrane attachment/insertion. We expressed these regions as fusion proteins with schistosomal GST and investigated their interaction with mixtures of zwitterionic (dimyristoyl-l-alpha-phosphatidylcholine, DMPC) and anionic (dimyristoyl-l-alpha-phosphatidylglycerol, DMPG) phospholipids in reconstituted lipid bilayers by differential scanning calorimetry (DSC). Using vesicles of mixed DMPC/DMPG with increasing fusion protein concentrations, we established in calorimetric assays a decrease of the main chain transition enthalpy, DeltaH, and a shift in chain melting temperature. This is indicative of the insertion of these fragments into the hydrophobic region of lipid membranes. We confirmed these findings by the film balance technique using lipid monolayers (DMPG). The binding judged from both methods was of moderate affinity.  相似文献   

2.
A Kurrle  P Rieber  E Sackmann 《Biochemistry》1990,29(36):8274-8282
We studied the interaction of transferrin receptors (of cell line Molt-4) with mixed model membranes as a function of lipid chain length (phospholipids with C14:0 and C18:1 hydrocarbon chains) and of the surface charge of the membrane using mixtures of C14:0 lecithin (DMPC) with C14:0 phosphatidylglycerol (DMPG) and C14:0 phosphatidylserine (DMPS). Spontaneous self-assembly of receptors and lipids was achieved by freeze-thaw cycles of a codispersion of mixed vesicles and receptors in buffer and subsequent separation of receptor-loaded and receptor-free vesicles by density gradient centrifugation. Information on specific lipid/protein interaction mechanisms was obtained by evaluation of protein-induced shifts of phase boundaries of lipid mixtures by calorimetry and by FTIR spectroscopy of partially deuterated lipid mixtures. The important role (1) of minimizing the elastic forces caused by the mismatch of the lengths of hydrophobic cores of the protein (lp) and the bilayer (lL) and (2) of the electrostatic coupling of protein head groups with the charged membrane/water interface for the lipid/protein self-assembly is established. The electrostatic interaction energy per receptor is about 10(3) kBT (by coupling to about 1000 charged lipids) which is sufficient to overcompensate the elastic energy associated with a mismatch of lp - lL approximately 1.0 nm. The maximum receptor concentration incorporated was measured as a function of membrane surface charge and lipid chain length. The maximum receptor molar fraction varied from xpmax = 5 x 10(-5) for DMPC to xpmax = 4 x 10(-4) for 1:1 DMPC/DMPG; moreover xpmax is higher for DMPS than for DMPG as charged component. For the long-chain lipids, xpmax is higher for a 9:1 DEPE/DEPC mixture [(4.2-9) x 10(-4)] than for pure DEPC (ca. 3.5 x 10(-4)). By decomposition of reconstituted receptors with proteases, we demonstrated the homogeneous orientation of the receptor with its extracellular head group pointing to the convex side of the vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The partition coefficients (K(p)) between lipid bilayers of dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) unilamellar liposomes and water were determined using derivative spectrophotometry for chlordiazepoxide (benzodiazepine), isoniazid and rifampicin (tuberculostatic drugs) and dibucaine (local anaesthetic). A comparison of the K(p) values in water/DMPG with those in water/DMPC (dimyristoyl-L-alpha-phosphatidylcholine) revealed that for chlordiazepoxide and isoniazid, neutral drugs at physiological pH, the partition coefficients are similar in anionic (DMPG) and zwitterionic (DMPC) liposomes. However, for ionised drugs at physiological pH, the electrostatic interactions are different with DMPG and DMPC, with the cationic dibucaine having a stronger interaction with DMPG, and the anionic rifampicin having a much larger K(p) in zwitterionic DMPC. These results show that liposomes are a better model membrane than an isotropic two-phase solvent system, such as water-octanol, to predict drug-membrane partition coefficients, as they mimic better the hydrophobic part and the outer polar charged surface of the phospholipids of natural membranes.  相似文献   

4.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an α-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The 31P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC35 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.  相似文献   

5.
UV-visible and dichroic spectrum analysis and electron microscopy have been used to characterize a new amphotericin B (AmB) lipid formulation prepared by a solvent displacement process. The composition was dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) in molar ratio DMPC/DMPG/AmB 7:3:5, a similar composition to that of Abelcet®. Although the latter has a “ribbon-like” structure, our process gave a thin disc-like structure. Analysis of circular dichroism (CD) and UV-visible spectra of formulations containing different percentages of AmB revealed that a minimum of AmB self-association was observed with 7:3:5 molar ratio. Varying the lipid ratio (DMPC/DMPG) while maintaining the fixed ratio of AmB yielded similar results when DMPC was in excess (DMPC/DMPG from 10:0 to 6:4). However, when the ratio was between 5:5 to 3:7, AmB self-aggregation increased. For compositions rich in DMPG (2:8 and 0:10), inversion of the CD spectrum was observed. The influence of the lipid composition on the morphology of the complex was also evident in electron microscopy. DMPC/DMPG/AmB (10:0:5) gave large unfracturable lamellae. The presence of DMPG shortened the lamellae, which often appeared as disc-like structures. AmB content, the presence of DMPG and the preparation process all contribute to generating these original structures with particular CD spectra.  相似文献   

6.
We have previously shown that leucine to lysine substitution(s) in neutral synthetic crown ether containing 14-mer peptide affect the peptide structure and its ability to permeabilize bilayers. Depending on the substitution position, the peptides adopt mainly either a α-helical structure able to permeabilize dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) vesicles (nonselective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). In this study, we have used a combination of solid-state NMR and Fourier transform infrared spectroscopy to investigate the effects of nonselective α-helical and selective intermolecular β-sheet peptides on both types of bilayers. 31P NMR results indicate that both types of peptides interact with the headgroups of DMPC and DMPG bilayers. 2H NMR and Fourier transform infrared results reveal an ordering of the hydrophobic core of bilayers when leakage is noted, i.e., for DMPG vesicles in the presence of both types of peptides and DMPC vesicles in the presence of nonselective peptides. However, selective peptides have no significant effect on the ordering of DMPC acyl chains. The ability of these 14-mer peptides to permeabilize lipid vesicles therefore appears to be related to their ability to increase the order of the bilayer hydrophobic core.  相似文献   

7.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

8.
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [(14)C]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [(14)C]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains ((14)C atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosity of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases.  相似文献   

9.
The binding of melittin to zwitterionic dimyristyphosphatidylcholine (DMPC) and anionic dimyristylphosphatidylglycerol (DMPG) was analysed using two different immobilized model membrane systems. The first system used surface plasmon resonance (SPR), which monitors the real-time binding of peptides to an immobilized hybrid bilayer. SPR experiments reflected a stronger binding of melittin for DMPG than for DMPC, while kinetic analysis suggested the existence of at least two distinct binding steps. The second lipid biosensor system involved an immobilized phospholipid monolayer covalently attached to a microporous silica surface. The binding of melittin to the immobilized monolayer was then monitored using dynamic elution chromatography with varied methanol concentrations to analyse the binding of melittin to DMPC and DMPG. The nonlinear binding behaviour observed for melittin with the phosphatidylcholine (PC) and phosphatidylglycerol (PG) monolayers compared with the linear retention plots and Gaussian peak shapes observed for the control molecule demonstrated that melittin undergoes significant conformational and orientational changes upon binding to the immobilized PC and PG ligands. The dependence of log k' on per cent methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while other forces, presumably electrostatic in nature, also made a contribution to the affinity of the peptides for the lipid monolayer, particularly at lower temperatures. The complementary use of these two lipid biosensors thus allows the role of hydrophobic and electrostatic forces in peptide-membrane interactions to be studied.  相似文献   

10.
Small unilamellar vesicles (SUVs) formed from a mixture of dimyristoylphosphatidylcholine (zwitterionic lipid with bulkier headgroup) and dimyristoylphosphatidylglycerol (anionic lipid with relatively smaller headgroup) allows better modulation of the physical properties of lipid bilayers compared to SUVs formed by a single type of lipid, providing us with a better model system to study the effect of membrane parameters on the partitioning of small molecules. Membrane parameter like packing of the vesicles is more pronounced in the gel phase and hence the study was carried out in the gel phase. Mixed vesicles formed from DMPG and DMPC with the mole percent ratio of 100:0, 90:10 and 80:20 were used for this study. As examples of polar solutes, piroxicam and meloxicam, two Non Steroidal Anti-inflammatory Drugs (NSAIDs) were chosen. The pH was adjusted to 2.8 in order to eliminate the presence of anionic forms of the drugs that would not approach the vesicles containing negatively charged DMPG (50% deprotonated at pH 2.8). Surface potential measured by using TNS (2,6-p-toluidinonaphthalene sulfonate, sodium salt) as surface charge sensitive probe showed no significant changes in the surface electrostatics in increasing DMPC content from 0 to 20%. Transmission electron microscopy (TEM) was used to characterize SUVs of different composition at pH 2.8. The average diameter of the mixed vesicles was found to be smaller than that formed by DMPG and DMPC alone. Partition coefficient (K(P)) of piroxicam and meloxicam was measured using intrinsic fluorescence of these molecules. K(P) value of piroxicam decreases with increase in DMPC content whereas it increases with DMPC content in case of meloxicam. This anomalous behavior of partitioning is unexpected since there was no significant change in surface pH of the vesicles and has been explained in terms of lipid packing and water penetration in the lipid bilayer.  相似文献   

11.
A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles made of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 °C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement.  相似文献   

12.
Neutrophil serine proteases Proteinase 3 (PR3) and human neutrophil elastase (HNE) are homologous antibiotic serine proteases of the polymorphonuclear neutrophils. Despite sharing a 56% sequence identity they have been shown to have different functions and localizations in the neutrophils. In particular, and in contrast to HNE, PR3 has been detected at the outer leaflet of the plasma membrane and its membrane expression is a risk factor in a number of chronic inflammatory diseases. Although a plethora of studies performed in various cell-based assays have been reported, the mechanism by which PR3, and possibly HNE bind to simple membrane models remains unclear. We used surface plasmon resonance (SPR) experiments to measure and compare the affinity of PR3 and HNE for large unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We also conducted 500-nanosecond long molecular dynamics simulations of each enzyme at the surface of a POPC bilayer to map the interactions between proteins and lipids and rationalize the difference in affinity observed in the SPR experiment. We find that PR3 binds strongly to POPC large unilamellar vesicles (Kd = 9.2 × 10− 7 M) thanks to the insertion of three phenylalanines, one tryptophan and one leucine beyond the phosphate groups of the POPC lipids. HNE binds in a significantly weaker manner (Kd > 10− 5 M) making mostly electrostatic interactions via lysines and arginines and inserting only one leucine between the hydrophobic lipid tails. Our results support the early reports that PR3, unlike HNE, is able to directly and strongly anchor directly to the neutrophil membrane.  相似文献   

13.
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers — OS) or completely (dense shell glycodendrimers — DS) modified with maltose residues. As a model membrane, two types of 100 nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.  相似文献   

14.
W C Wimley  T E Thompson 《Biochemistry》1991,30(17):4200-4204
It has previously been demonstrated that lipid exchange between phosphatidylcholine vesicles, at higher concentrations, is characterized by a second-order concentration-dependent exchange process in addition to the first-order process operative at lower concentrations (Jones, J. D., & Thompson, T. E. (1989) Biochemistry 28, 129-134). Furthermore, it was demonstrated that the second-order process occurs as a result of an enhancement of the first-order desorption process, possibly resulting from attractive interactions between a potentially desorbing lipid molecule and a transiently apposed bilayer (Jones, J. D., & Thompson, T. E. (1990) Biochemistry 29, 1593-1600). In this work we have studied the exchange of [3H]dimyristoylphosphatidylcholine (DMPC) between large vesicles of the compositions 100% DMPC, 70/30 (mol/mol) DMPC/dimyristoylphosphatidylethanolamine (DMPE), and 68.25/30/1.75 (mol/mol/mol) DMPC/DMPE/dimyristoylphosphatidylglycerol (DMPG). The second-order exchange process is enhanced by 100-fold or more in vesicles containing 30 mol % DMPE relative to 100% DMPC and is reduced or eliminated by the addition of 1.75% of the anionic lipid DMPG. These effects can be achieved by alterations in the equilibrium bilayer separation of 5 A or less. The results are in accord with the model of Jones and Thompson and indicate that relatively low concentrations of PE in a PC bilayer can have significant effects on bilayer surface properties and on potential interactions between bilayers.  相似文献   

15.
The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide–membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.  相似文献   

16.
The anti-tumour protein alpha-sarcin causes fusion of bilayers of phospholipid vesicles at neutral pH. This is demonstrated by measuring the decrease in the efficiency of the fluorescence energy transfer between N-(7-nitro-2-1,3-benzoxadiazol-4-yl)-dimyristoylphosphatidylethano lamine (NDB-PE) (donor) and N-(lissamine rhodamine B sulphonyl)-diacylphosphatidylethanolamine (Rh-PE) (acceptor) incorporated in dimyristoylphosphatidylcholine (DMPG) vesicles. The effect of alpha-sarcin is a maximum at 0.15 M ionic strength and is abolished at basic pH. alpha-Sarcin promotes fusion between 1,6-diphenylhexa-1,3,5-triene (DPH)-labelled DMPG and dipalmitoyl-PG (DPPG) vesicles, resulting in a single thermotropic transition for the population of fused phospholipid vesicles. Bilayers composed of DMPC and DMPG, at different molar ratios in the range 1:1 to 1:10 PC/PG, are also fused by alpha-sarcin. Freeze-fracture electron micrographs corroborate the occurrence of fusion induced by the protein. alpha-Sarcin also modifies the permeability of the bilayers, causing the leakage of calcein in dye-trapped PG vesicles. All of the observed effects reach saturation at a 50:1 phospholipid/protein molar ratio, which is coincident with the binding stoichiometry previously described.  相似文献   

17.
Human apolipoprotein (apo) E exists as one of three major isoforms, E2, E3 or E4. Individuals carrying the 4 allele have an increased risk of heart disease and premature onset of Alzheimer's disease. To investigate the molecular basis for this phenomenon, the N-terminal domain of apoE3, apoE2 and apoE4 were expressed in bacteria, isolated and employed in lipid binding and stability studies. Far UV circular dichroism spectroscopy in buffer at pH 7 revealed a similar amount of -helix secondary structure for the three isoforms. By contrast, differences were noted in apoE-NT isoform-specific transformation of bilayer vesicles of dimyristoylphosphatidylglycerol (DMPG) into discoidal complexes. ApoE4-NT induced transformation was most rapid, followed by apoE3-NT and apoE2-NT. To determine if differences in the rate of apoE-NT induced DMPG vesicle transformation is due to isoform-specific differences in helix bundle stability, guanidine HCl denaturation studies were conducted. The results revealed that apoE2-NT was the most stable, followed by apoE3-NT and apoE4-NT, establishing an inverse correlation between helix bundle stability and DMPG vesicle transformation rate at pH 7. When the zwitterionic dimyristoylphosphatidylcholine (DMPC) was employed as the model lipid surface, interaction of apoE-NT isoforms with the lipid substrate was slow. However, upon lowering the pH from 7 to 3, a dramatic increase in the rate of DMPC vesicle transformation rate was observed for each isoform. To evaluate if the increased DMPC vesicle transformation rates observed at low pH is due to pH-dependent alterations in helix bundle stability, guanidine HCl denaturation studies were performed. ApoE2-NT and apoE3-NT displayed increased resistance to denaturation as a function of decreasing pH, while apoE4-NT showed no change in stability. Studies with the fluorescent probe, 8-anilino-1-naphthalene sulfonic acid, indicated an increase in apoE hydrophobic surface exposure upon decreasing the pH to 3.0. Taken together, the data indicate that changes in the stability of secondary structure elements in apoE-NT isoforms are not responsible for pH-induced increases in lipid binding activity. It is likely that pH-induced disruption of inter-helical tertiary contacts may promote helix bundle conformational changes that present the hydrophobic interior of the protein to potential lipid surface binding sites.  相似文献   

18.
The carboxyl terminus of the type-1 angiotensin II receptor (AT(1A)) is a focal point for receptor activation and deactivation. Synthetic peptides corresponding to the membrane-proximal, first 20 amino acids of the carboxyl terminus adopt an alpha-helical conformation in organic solvents, suggesting that the secondary structure of this region may be sensitive to hydrophobic environments. Using surface plasmon resonance, immobilized lipid chromatography, and circular dichroism, we examined whether this positively charged, amphipathic alpha-helical region of the AT(1A) receptor can interact with lipid components in the cell membrane and thereby modulate local receptor attachment and structure. A synthetic peptide corresponding to the proximal region of the AT(1A) receptor carboxyl terminus (Leu(305) to Lys(325)) was shown by surface plasmon resonance to bind with high affinity to the negatively charged lipid, dimyristoyl L-alpha-phosphatidyl-DL-glycerol (DMPG), but poorly to the zwitterionic lipid, dimyristoyl L-alpha-phosphatidylcholine (DMPC). In contrast, a peptide analogue possessing substitutions at four lysine residues (corresponding to Lys(307,308,310,311)) displayed poor association with either lipid, indicating a crucial anionic component to the interaction. Circular dichroism analysis revealed that both the wild-type and substituted peptides possessed alpha-helical propensity in methanol and trifluoroethanol, while the wild-type peptide also adopted partially inserted helical structure in DMPG and DMPC liposomes. In contrast, the substituted peptide exhibited spectra that suggested the presence of beta-sheet and alpha-helical structure in both liposomes. Immobilized lipid chromatography was used to characterize the hydrophobic component of the membrane interaction, and the results demonstrated that hydrophobic and electrostatic interactions mediated the binding of the wild-type peptide but that the substituted peptide bound to the model membranes mainly via hydrophobic forces. We propose that, in intact AT(1A) receptors, the proximal carboxyl terminus associates with the cytoplasmic face of the cell membrane via a high-affinity, anionic phospholipid-specific tethering that serves to increase the amphipathic helicity of this region. Such associations may be important for receptor function and common for G protein-coupled receptors.  相似文献   

19.
Independently from the cell penetrating peptide uptake mechanism (endocytic or not), the interaction of the peptide with the lipid bilayer remains a common issue that needs further investigation. The cell penetrating or antimicrobial properties of exogenous peptides require probably different preliminary interactions with the plasma membrane. Herein, we have employed (31)P NMR, differential scanning calorimetry and CD to study the membrane interaction and perturbation mechanisms of two basic peptides with similar length but distinct charge distribution, penetratin (non-amphipathic) and RL16, a secondary amphipathic peptide. The peptide effects on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dipalmitoleoyl phosphatidylethanolamine (DiPoPE) were investigated. We have found that, even though both peptides are cationic, their interaction with zwitterionic versus anionic lipids is markedly distinct. Penetratin greatly affects the temperature, enthalpy and cooperativity of DMPG main phase transition but does not affect those of DMPC while RL16 presents opposite effects. Additionally, it was found that penetratin induces a negative curvature whereas RL16 induces a positive one, since a decrease in the fluid lamellar to inverted hexagonal phase transition temperature of DiPoPE (T(H)) was observed for penetratin and an increase for RL16. Contrary to penetratin, (31)P NMR of samples containing DMPC MLVs and RL16 shows an isotropic signal indicative of the formation of small vesicles, concomitant with a great decrease in sample turbidity both below and at the phase transition temperature. Opposite effects were also observed on DMPG where both peptides provoke strong aggregation and precipitation. Both CPPs adopt helical structures when contacting with anionic lipids, and possess a dual behavior by either presenting their cationic or hydrophobic domains towards the phospholipid face, depending on the lipid nature (anionic vs zwitterionic, respectively). Surprisingly, the increase of electrostatic interactions at the water membrane interface prevents the insertion of RL16 hydrophobic region in the bilayer, but is essential for the interaction of penetratin. Modulation of amphipathic profiles and charge distribution of CPPs can alter the balance of hydrophobic and electrostatic membrane interaction leading to translocation or and membrane permeabilisation. Penetratin has a relative pure CPP behavior whereas RL16 presents mixed CPP/AMP properties. A better understanding of those processes is essential to unveil their cell translocation mechanism.  相似文献   

20.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号