首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces the integration of additive partitioning with species—area relationships to island biogeography in order to address the question “How are the pteridophyte and spermatophyte native and endemic flora of different oceanic archipelagos partitioned across islands?”.Species richness data of all endemic species and all native species of pteridophytes and spermatophytes were obtained for the Azores, Canaries and Cape Verde in the Atlantic Ocean and Galápagos, Hawaii and Marquesas in the Pacific Ocean. Additive partitioning of species diversity was used to quantify how much of the total diversity of an oceanic archipelago flora (γ-diversity) is due to (i) the mean species richness of the flora of each island (α-diversity), (ii) the variability in species richness of the floras across islands (βNestedness) and (iii) the complementarity in species composition of the floras of different islands (βReplacement). The analysis was separately performed for the native and endemic pteridophyte and spermatophyte floras.The diversity partitioning of the six archipelagos showed large differences in how the flora of each archipelago is partitioned among the α, βNestedness and βReplacement components, for pteridophytes and spermatophytes and for all endemic species and all native species. The α-diversity was more important for all native species than for endemic species and more important for pteridophytes than for spermatophytes, with the Azores showing outstanding high values of α-diversity. The βNestedness was higher for pteridophytes than for spermatophytes and higher for endemic species than for all native species in both pteridophytes and spermatophytes. The values of βReplacement suggested that: (i) the spermatophyte native flora is more differentiated across islands than the pteridophyte native flora and (ii) the pteridophyte endemic flora and, especially, the spermatophyte endemic flora are more differentiated across islands than the corresponding native flora. An outstanding value of βReplacement for endemic and all native spermatophytes was found in Hawaii, confirming the biogeographical island differentiation in this archipelago.  相似文献   

2.
Abstract.— The vascular‐plant flora of the Hawaiian Islands is characterized by one of the highest rates of species endemism in the world. Among flowering plants, approximately 89% of species are endemic, and among pteridophytes, about 76% are endemic. At the single‐island level, however, rates of species endemism vary dramatically between these two groups with 80% of angiosperms and only 6% of pteridophytes being single‐island endemics. Thus, in many groups of Hawaiian angiosperms, it is possible to link studies of phylogeny, evolution, and biogeographic history at the interspecific and interisland levels. In contrast, the low level of single‐island species endemism among Hawaiian pteridophytes makes similar interspecific and interisland studies nearly impossible. Higher levels of interisland gene flow may account for the different levels of single‐island endemism in Hawaiian pteridophytes relative to angiosperms. The primary question we addressed in the present study was: Can we infer microevolutionary patterns and processes among populations within widespread species of Hawaiian pteridophytes wherein gene flow is probably common? To address this broad question, we conducted a population genetic study of the native Hawaiian colonizing species Odontosoria chinensis. Data from allozyme analyses allowed us to infer: (1) significant genetic differentiation among populations from different islands; (2) historical patterns of dispersal between particular pairs of islands; (3) archipelago‐level patterns of dispersal and colonization; (4) founder effects among populations on the youngest island of Hawaii; and, (5) that this species primarily reproduces via outcrossing, but may possess a mixed‐mating system.  相似文献   

3.
4.
Aim The biogeographical patterns and drivers of diversity on oceanic islands in the tropical South Pacific (TSP) are synthesized. We use published studies to determine present patterns of diversity on TSP islands, the likely sources of the biota on these islands and how the islands were colonized. We also investigate the effect of extinctions. Location We focus on oceanic islands in the TSP. Methods We review available literature and published molecular studies. Results Examples of typical island features (e.g. gigantism, flightlessness, gender dimorphism) are common, as are adaptive radiations. Diversity decreases with increasing isolation from mainland sources and with decreasing size and age of archipelagos, corresponding well with island biogeographical expectations. Molecular studies support New Guinea/Malesia, New Caledonia and Australia as major source areas for the Pacific biota. Numerous studies support dispersal‐based scenarios, either over several 100 km (long‐distance dispersal) or over shorter distances by island‐hopping (stepping stones) and transport by human means (hitch‐hiking). Only one vicariance explanation, the eastward drift of continental fragments (shuttles) that may have contributed biota to Fiji from New Caledonia, is supported by some geological evidence, although there is no evidence for the transport of taxa on shuttle fragments. Another vicariance explanation, the existence of a major continental landmass in the Pacific within the last 100 Myr (Atlantis theory), receives little support and appears unlikely. Extinction of lineages in source areas and persistence in the TSP has probably occurred many times and has resulted in misinterpretation of biogeographical data. Main conclusions Malesia has long been considered the major source region for the biota of oceanic islands in the TSP because of shared taxa and high species diversity. However, recent molecular studies have produced compelling support for New Caledonia and Australia as alternative important source areas. They also show dispersal events, and not vicariance, to have been the major contributors to the current biota of the TSP. Past extinction events can obscure interpretations of diversity patterns.  相似文献   

5.
Aim To use patterns of nestedness in the indigenous and non‐indigenous biotas of the Southern Ocean islands to determine the influence of dispersal ability on biogeographical patterns, and the importance of accounting for variation in dispersal ability in their subsequent interpretation, especially in the context of the Insulantarctic and multi‐regional hypotheses proposed to explain the biogeography of these islands. Location Southern Ocean islands. Methods Nestedness was determined using a new metric, d1 (a modification of discrepancy), for the indigenous and introduced seabirds, land birds, insects and vascular plants of 26 Southern Ocean islands. To assess the possible confounding effects of spatial autocorrelation on the results, islands were assigned to 11 major island groups and each group was treated as a single island in a following analysis. In addition, nestedness of the six Southern Ocean islands comprising the South Pacific Province (New Zealand islands) was analysed. All analyses were conducted for species and genera, for each of the taxa on its own, and for the complete data sets. Results Statistically significant nestedness was found in all of the taxa examined, with nestedness declining in the order seabirds > land birds > vascular plants > insects for the indigenous species. Vagility had a marked influence on nestedness and the biogeographical patterns shown by the indigenous species. This influence was borne out by additional analyses of marine taxa and small‐sized terrestrial species, both of which were more nested than the most nested group examined here, the seabirds. Assemblages of non‐indigenous species also showed nestedness, and nestedness was generally more pronounced than in the indigenous species. Surprisingly, vagility had a significant effect on nestedness in these assemblages too. Main conclusions Nestedness analyses provide a quantitative means of comparing biogeographical patterns for groups differing in vagility. These comparisons revealed that vagility has a considerable influence on biogeographical patterns and should be taken into account in analyses. Here, investigations of more vagile taxa support hypotheses for a single origin of the Southern Ocean island biota (the Insulantarctica scenario), whilst those of less mobile taxa support the more commonly held, multi‐regional hypothesis. All biogeographical analyses across the Southern Ocean (and elsewhere) will be influenced by the effects of dispersal ability, with composite analyses dominated by sedentary groups likely to favour multi‐regional scenarios, and those dominated by mobile groups favouring single origins. Mechanisms underlying nestedness in the region range from nested physiological tolerances in more mobile groups to colonization ability and patterns of speciation in less vagile taxa. Considerable nestedness in the non‐indigenous assemblages is largely a consequence of the fact that many of these species are European weedy species.  相似文献   

6.
Aim To assess biogeographical patterns of Acanthaceae, Bromeliaceae, Cactaceae and Pteridophyta in Bolivian Andean seasonally dry forest islands and to explain current floristic differences between these islands by means of extrinsic (precipitation, elevation) and intrinsic (dispersal ability) factors. Location Ten isolated and disjunct seasonally dry forest areas in the Bolivian Andes and the adjacent seasonal forest areas of the Chiquitanía and Chaco regions. Methods We collated species data from recently updated and revised taxonomic treatments and herbarium collections for Acanthaceae, Bromeliaceae, Cactaceae and Pteridophyta, constructed floristic distance matrices to estimate beta diversity at the study sites and subjected them to Mantel correlation analyses. Multiple regressions on distance matrices allowed us to test the influence of geographical distance and environmental (elevation and precipitation) differences on floristic differentiation. Results Acanthaceae and Bromeliaceae, and to a lesser extent Cactaceae, showed coincident biogeographical patterns and suggested the presence of two seasonally dry forest groups in Andean Bolivia: one including all small isolated northern dry valleys and another including all southern valleys with connections to the lowland seasonal forests of the Chiquitanía and the Chaco. Most of the variation in the floristic distance matrices in these plant groups, with seed dispersal typically restricted to short distances, was explained by spatial separation between habitat islands. In contrast, pteridophytes showed a different biogeographical pattern. Their floristic differences between sites were determined by the environmental variables. The anemochorous and spore‐based dispersal system of this plant group seems to be a highly effective mechanism allowing pteridophytes to easily reach even the isolated dry valleys in inter‐Andean Bolivia. Main conclusions Current biogeographical patterns in dry Andean habitat islands can provide insights into the factors that control the processes of community assembly. We show that differences in community composition of phylogenetically distant plant groups in the understorey of seasonally dry forest islands can be explained by a combination of the habitat characteristics where the group is present (either precipitation, elevation or both) and, more interestingly, by group specific dispersal limitation (as inferred by geographical distance between island habitats).  相似文献   

7.
A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio‐temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time‐isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time‐isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio‐temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity.  相似文献   

8.
Oceanic islands emerge lifeless from the seafloor and are separated from continents by long stretches of sea. Consequently, all their species had to overcome this stringent dispersal filter, making these islands ideal systems to study the biogeographic implications of long‐distance dispersal (LDD). It has long been established that the capacity of plants to reach new islands is determined by specific traits of their diaspores, historically called dispersal syndromes. However, recent work has questioned to what extent such dispersal‐related traits effectively influence plant distribution between islands. Here we evaluated whether plants bearing dispersal syndromes related to LDD – i.e. anemochorous (structures that favour wind dispersal), thalassochorous (sea dispersal), endozoochorous (internal animal dispersal) and epizoochorous (external animal dispersal) syndromes – occupy a greater number of islands than those with unspecialized diaspores by virtue of their increased dispersal ability. We focused on the native flora of the lowland xeric communities of the Canary Islands (531 species) and on the archipelago distribution of the species. We controlled for several key factors likely to affect the role of LDD syndromes in inter‐island colonization, namely: island geodynamic history, colonization time and phylogenetic relationships among species. Our results clearly show that species bearing LDD syndromes have a wider distribution than species with unspecialized diaspores. In particular, species with endozoochorous, epizoochorous and thalassochorous diaspore traits have significantly wider distributions across the Canary archipelago than species with unspecialized and anemochorous diaspores. All these findings offer strong support for a greater importance of LDD syndromes on shaping inter‐island plant distribution in the Canary Islands than in some other archipelagos, such as Galápagos and Azores.  相似文献   

9.
Analysis of biogeographic affinities is a key tool to establish and improve the resolution of hierarchical biogeographic systems. We describe patterns of species richness of the marine macroalgal flora across Lusitanian Macaronesia (Azores, Madeira, the Salvage Islands and the Canary Islands), and test (i) whether such differences are related to differences in proximity to the nearest continental shore and size among islands. We also explore biogeographic affinities in the composition of macroalgal assemblages (= presence/absence of each taxon in multivariate datasets) to determine (ii) whether each archipelago is a biogeographic unit within this ecoregion and (iii) whether patterns in assemblage composition are related to proximity (i.e. distances) among islands. Presence/absence matrices were created to test and visualize multivariate affinities among archipelagos. A total of 872 taxa were compiled. Species richness peaked at the Canary Islands and decreased towards the Azores; the pattern matched a progressive increase in distance from the nearest continental shores, matching the classical island biogeography theory. Intra-archipelago differences in species richness were largely related to variations in island size. Biogeographic similarities among archipelagos were hierarchically structured. Madeira and the Salvage Islands constituted one biogeographic unit. Floras from the Azores, Madeira and the Salvage Islands were barely separable from each other, but were different from those at the Canary Islands. Such biogeographic similarities among islands were negatively correlated with the geographical separation (i.e. distances) among them. Proximity to nearby continental shores, in conjunction with large- and meso-scale oceanographic patterns, seems to interact to create patterns in richness and composition of algal assemblages across Lusitanian Macaronesia.  相似文献   

10.
The general dynamic model of oceanic island biogeography describes the evolution of species diversity properties, including species richness (SR), through time. We investigate the hypothesis that SR in organisms with high dispersal capacities is better predicted by island area and elevation (as a surrogate of habitat diversity) than by time elapsed since island emergence and geographic isolation. Linear mixed effect models (LMMs) subjected to information theoretic model selection were employed to describe moss and liverwort SR patterns from 67 oceanic islands across 12 archipelagos. Random effects, which are used to modulate model parameters to take differences among archipelagos into account, included only a random intercept in the best‐fit model for liverworts and in one of the two best‐fit models for mosses. In this case, the other coefficients are constant across archipelagos, and we interpret the intercept as a measure of the intrinsic carrying capacity of islands within each archipelago, independently of their size, age, elevation and geographic isolation. The contribution of area and elevation to the models was substantially higher than that of time, with the least contribution made by measures of geographic isolation. This reinforces the idea that oceanic barriers are not a major impediment for migration in bryophytes and, together with the almost complete absence of in situ insular diversification, explains the comparatively limited importance of time in the models. We hence suggest that time per se has little independent role in explaining bryophyte SR and principally features as a variable accounting for the changing area and topographic complexity during the life‐cycle of oceanic islands. Simple area models reflecting habitat availability and diversity might hence prevail over more complex temporal models reflecting in‐situ speciation and dispersal (time, geographic connectivity) in explaining patterns of biodiversity for exceptionally mobile organisms.  相似文献   

11.
Aim To test the hypothesis that plant species with a higher dispersal ability have a lower beta diversity. Location North America north of Mexico. Method Propagules of pteridophytes (ferns and their allies) are more vagile than propagules of spermatophytes (gymnosperms and angiosperms), and thus pteridophytes have a higher dispersal ability than do spermatophytes. The study area was divided into 71 geographical units distributed in five latitudinal zones. Species lists of pteridophytes and spermatophytes were compiled for each geographical unit. Three measures of beta diversity were used: βsim, which is one minus the Simpson index of similarity, βslope, which is the slope of the relationship between Simpson index and geographical distance, and β0.5‐distance, which is the distance that halves the similarity from its initial value. Results Average βsim is higher for spermatophytes than for pteridophytes, regardless of whether the data are analysed for the whole continent or for latitudinal zones. Average βsim decreases with increasing latitude for both spermatophytes and pteridophytes. The difference in average βsim between the two plant groups increases with increasing latitude, indicating that beta diversity decreases with increasing latitude faster for pteridophytes than for spermatophytes. When the Simpson index is regressed against geographical distance, the regression slope (βslope) is steeper for spermatophytes than for pteridophytes, and the slope decreases with increasing latitude for both plant groups. Similarly, β0.5‐distance was shorter for spermatophytes than for pteridophytes in each latitudinal zone and increased with increasing latitude for both plant groups. The results of the analyses using the three different measures of beta diversity are consistent. Main conclusions The fact that beta diversity is lower for pteridophytes with vagile propagules than for spermatophytes with less vagile propagules suggests that beta diversity is negatively related to dispersal ability.  相似文献   

12.
Although islands as natural laboratories have held the attention of scientists for centuries, they continue to offer new study questions, especially in the context of the current biodiversity crisis. To date, habitat diversity on islands and spatial configuration of archipelagos have received less attention than classical island area and isolation. Moreover, in the field where experiments are impossible, correlative methods have dominated, despite the call for more mechanistic approaches. We developed an agent‐based computer simulation to study the effect of habitat diversity and archipelago configuration on plant species richness and composition in five archipelagos worldwide (Hawaii, Galapagos, Canary Islands, Cape Verde and Azores) and compared simulated diversity patterns to the empirical data. Habitat diversity proved to be an important factor to achieve realistic simulation results in all five archipelagos, whereas spatial structure of archipelagos was important in more elongated archipelagos. In most cases, simulation results correlate stronger with spermatophyte than with pteridophyte data, which we suggest can be attributed to the different dispersal and evolution rates of the two species groups. Correlation strength between simulated and observed diversity also varied among archipelagos, suggesting that geological and biogeographic histories of archipelagos have affected the species richness and composition on the islands. Our study demonstrates that a relatively simple computer simulation involving just a few essential processes can largely emulate patterns of archipelagic species richness and composition and serve as a powerful additional method to complement empirical approaches.  相似文献   

13.
Aim We analyse modern patterns of richness, presence and extinction of birds of prey (Accipitriforms and Falconiforms) in the Mediterranean and Macaronesian islands, using an integrated approach involving both biogeographical and human‐induced factors. Location Forty‐three islands grouped into nine Mediterranean and Macaronesian archipelagos. Methods Information about 25 species breeding during the past century and their fate (permanence or extinction) was compiled from the literature and regional reports. Jaccard's similarity index and cluster analyses were applied to define island assemblages. In order to detect the factors driving richness, presence and extinction, generalized linear models (GLM) were applied to 32 explanatory variables, evaluating location, physiography, isolation of island, taxonomic affinities and life‐history patterns of the raptor species. Results Islands belonging to the same archipelago clustered when raptor assemblages were compared, revealing a marked biogeographical signal. Species richness was influenced by island area and accessibility from the continent (explained deviance of 51% in the GLM). Models of the probability of presence (explained deviance of 32%) revealed positive influences of migratory patterns (maximum for partial migrants), size of distribution areas and proximity to main migration routes. The model for probability of extinction explained only 8% of the deviance. It revealed that populations living on islands with a high density of human population were more prone to disappear. Also, raptors depending on human resources had more risk of extinction. Main conclusions Basic predictions of island biogeography can explain current patterns of raptor richness in the study area despite millennia of intense humanization processes. Colonization success appears to depend on life‐history traits linked to migratory and dispersal strategies, whereas body‐size constraints are not influential. Additionally, our results reveal the importance of species‐based analyses in studies of island biogeography.  相似文献   

14.
Aim R. J. Whittaker et al. recently proposed a ‘general dynamic model of oceanic island biogeography’ (GDM), providing a general explanation of island biodiversity patterns by relating fundamental biogeographical processes – speciation, immigration, extinction – to area (A) and time (T; maximum island geological age). We adapt their model, which predicts a positive relationship with area combined with a humped relationship to time (designated the ATT2 model), to study the factors promoting diversification on the Azores for several arthropod groups. Location The Azorean archipelago (North Atlantic; 37–40° N, 25–31° W). Methods We use the number of single‐island endemics (SIEs) as a measure of diversification, to evaluate four different predictions for the variation in SIEs between different islands, derived from the GDM theory and our knowledge of the fauna and history of the Azores. We calculated the number of SIEs for seven out of the nine Azorean islands and six groups of species (all arthropods, beetles, cavernicolous and non‐cavernicolous species, and taxa with high and low dispersal abilities). Several variables accounting for island characteristics (area, geological age, habitat diversity and isolation) and generalized linear models were used to evaluate the reliability of each prediction. Results A linear and positive relationship between SIEs and an AT (area + time) model was the most parsimonious explanation for overall arthropod diversification. However, cavernicolous species showed the opposite pattern (more SIEs inhabiting the youngest islands). Also, isolation was an important predictor of diversification for all groups except for the species with high dispersal ability; while the former were negatively related to the distance from the main source of colonizing lineages (Santa Maria island in most cases), the latter were related to area. Dispersal ability was also a key factor affecting the diversification of most groups of species. Main conclusions In general, the diversification of Azorean arthropods is affected by age, area and isolation. However, different groups are affected by these factors in different ways, showing radically different patterns. Although the ATT2 model fails to predict the diversification pattern of several groups, it provides a framework for integrating these deviations into a general theory. Further improvements of the GDM theory need to take into account the particular traits of each group and the role of isolation in shaping island diversity.  相似文献   

15.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

16.
Aim We use molecular‐based phylogenetic methods and ancestral area reconstructions to examine the systematic relationships and biogeographical history of the Indo‐Pacific passerine bird family Pachycephalidae (whistlers). Analysed within an explicit spatiotemporal framework, we elucidate distinct patterns of diversification across the Melanesian and Indonesian archipelagos and explore whether these results may be explained by regional palaeogeological events. We further assess the significance of upstream colonization and its role in species accumulation within the region. Location The Indo‐Pacific region, with an emphasis on the archipelagos on either side of the Australo‐Papuan continent. Methods We used three nuclear and two mitochondrial markers to construct a molecular phylogenetic hypothesis of the Pachycephalidae by analysing 35 of the 49 species known to belong to the family. The programs diva and Mr Bayes were used to reconstruct ancestral area relationships and to examine biogeographical relationships across the family, and beast was implemented to assess the timing of dispersal events. Results We constructed a molecular phylogenetic hypothesis for the Pachycephalidae and estimated divergence times and ancestral area relationships. Different colonization patterns are apparent for the Pachycephalidae in the Indonesian and the Melanesian archipelagos. The Indonesian archipelago was colonized numerous times, whereas one or two colonizations of the Melanesian archipelagos account for the entire diversity of that region. After initial colonization of the Melanesian archipelagos some whistler species recolonized Australia and may have commenced a second round of colonization into Melanesia. Main conclusions The contrasting dispersal patterns of whistlers in archipelagos on either side of the Australo‐Papuan continent are congruent with the arrangement and history of islands in each of the regions and demonstrate that knowledge of palaeogeography is important for an understanding of evolutionary patterns in archipelagos. We also highlight that recolonization of continents from islands may be more common than has previously been assumed.  相似文献   

17.
Genetic and morphometric variation was examined in eleven island populations of the horse‐shoe bat, Rhinolophus affinis, at the easterly end of this widespread species’ range and encompassing the Australian–Oriental biogeographic interface. Allozyme variation revealed mean heterozygosity levels within islands of 0.047, which is near the mammalian average. However, heterozygosity tended to decline from west to east as populations approached the periphery of the species’ distribution, and was lowest in those islands that were separated by the greatest sea‐crossing from source populations. There is extensive between‐island genetic differentiation (mean FST = 0.40) and relationships between islands are associated with their arrangement in geographical space; genetic distance is correlated with geographical distance and the genetic arrangement of islands is associated with longitude. The arrangement of islands as indicated by variation in body and skull metrics is also associated with their geographical positions, and the metric and genetic measures are themselves associated. While other taxa in the region have shown genetic‐geographical concordances, R. affinis is the only one that displays concordant patterns in metrical features. These patterns in biological diversity are interpreted as arising from the sequential island population structure and clines in key biogeographic gradients.  相似文献   

18.
Aim To study the importance of ecological and geographical factors in explaining arthropod species composition on islands. Location The Aeolian Islands, a volcanic archipelago in the central Mediterranean, near Sicily. Methods The influence of island area, age, distance to the mainland, distance to the nearest island and land cover categories on species composition of arthropod groups was analysed using canonical correspondence analysis (CCA). The use of multiple animal groups in the same archipelago allowed the development of two complementary approaches based on CCA – a ‘taxon‐focused’ approach and an ‘island‐focused’ approach – to elucidate, respectively, how different taxa respond to the same environmental factors, and which factors are mainly responsible for the composition of the faunas in different locations. Results Island area was an important factor in explaining species composition in Chilopoda, Orthoptera and Tenebrionidae. Distance to the mainland was important mainly for Carabidae. Distance to the closest island was important for many groups. By contrast, island age exerted a significant influence only on the species composition of Orthoptera. Various groups were influenced by a combination of broad‐leaved forest and natural grassland. Main conclusions The example of the arthropods of the Aeolian Islands indicates that the influence of a given island characteristic on species composition varies among groups, although measures of inter‐island isolation were typically more important for taxa than isolation from the mainland source. This suggests that colonization of islands may occur mostly by stepping‐stone dispersal.  相似文献   

19.
A major aim of island biogeography has been to describe general patterns of species richness across islands and to identify the processes responsible. Data are often collected across many islands; with larger datasets providing increased statistical power and more accurate parameter estimates. However, there is often structure in observational data, violating an assumption of linear models that each datum is independent. In island biogeography this structure may take the form of an island, archipelago or taxon being represented by multiple data points. We survey recent papers in this field and find that these forms of non‐independence are a common feature. Most authors addressed this problem by conducting separate analyses for each archipelago, taxon or combination of the two, but a better tool for dealing with non‐independence and structure in data, the mixed model, already exists. We demonstrate the advantages of a mixed model approach by applying it to a well‐known dataset that spans 134 observations of single island endemic (SIE) richness across 39 islands, four archipelagos and four taxa. Taking island area and age into account, SIE richness varies substantially more among archipelagos than it does among islands or taxa. We find that SIE richness rises with island age on the Azores and Galapagos, while on the Canaries and Hawaii SIE richness initially rises with age but later declines on older islands. Our analyses demonstrate three advantages to island biogeography of applying a mixed modelling approach: 1) structure in the data is controlled for; 2) the variance among islands, archipelagos and taxa is estimated; 3) all the data can be included in a single model, making it possible to test whether trends are general across all archipelagos and taxa or are idiosyncratic.  相似文献   

20.
Aim In contrast to angiosperms, bryophytes do not appear to have radiated in Macaronesia and the western Mediterranean. We evaluate if: (1) the apparent lack of radiation in bryophytes reflects our failure to recognize cryptic endemic species; (2) bryophytes are characterized by extremely low evolutionary rates; or (3) bryophytes have a high dispersal ability, which prevents genetic isolation. Location Worldwide, with a special emphasis on Macaronesia and the western Mediterranean. Methods Three chloroplast regions were sequenced from samples of the moss Grimmia montana from its entire distribution range. Network analyses, Fst and Nst statistics were used to describe and interpret the phylogeographical signal in the data. Results Despite significant phylogeographical signal in the chloroplast genome, which demonstrates limits to gene flow at the continental scale, repeated sister group relationships observed among accessions from different geographical areas suggest recurrent colonization patterns. These observations are consistent with mounting evidence that intercontinental distributions exhibited by many bryophyte species result from long‐distance dispersal rather than continental drift. Madeiran and western Mediterranean island haplotypes are either shared by, or closely related to, European and North American ones. Fst values between Madeira, western Mediterranean islands, North America and Europe are not significantly different from zero, and suggest that Madeira and the south‐western Mediterranean are subject to strong transatlantic gene flow. By contrast, haplotypes found in the Canary Islands are shared or closely related to those of populations from south‐western Europe or southern Africa. Main conclusions Multiple origins and colonization events are not consistent with the hypothesis of a relictual origin of the Macaronesian moss flora. One possible reason for the failure of taxa that experienced multiple colonization events to radiate is niche pre‐emption. We suggest that strong gene flow, coupled with the occupancy of all suitable niches, either by earlier conspecific colonizers or by other species, could be the mechanism preventing island radiation in G. montana and other cryptogams with high long‐distance dispersal abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号