首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Development of adventitious roots (ARs) at the base of the shoot is an important adaptation of plants to waterlogging stress; however, its physiological mechanisms remain unclear. Here, we investigated the regulation of AR formation under waterlogged conditions by hormones and reactive oxygen species (ROS) in Cucumis sativus L., an agriculturally and economically important crop in China. We found that ethylene, auxin, and ROS accumulated in the waterlogged cucumber plants. On the other hand, application of the ethylene receptor inhibitor 1‐methylcyclopropene (1‐MCP), the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA), or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the number of ARs induced by waterlogging. Auxin enhanced the expression of ethylene biosynthesis genes, which led to ethylene entrapment in waterlogged plants. Both ethylene and auxin induced the generation of ROS. Auxin‐induced AR formation was inhibited by 1‐MCP, although ethylene‐induced AR formation was not inhibited by NPA. Both ethylene‐ and auxin‐induced AR formation were counteracted by DPI. These results indicate that auxin‐induced AR formation is dependent on ethylene, whereas ethylene‐induced AR formation is independent of auxin. They also show that ROS signals mediate both ethylene‐ and auxin‐induced AR formation in cucumber plants.  相似文献   

4.
Question: Do tree species, with different litter qualities, affect the within‐forest distribution of forest understorey species on intermediate to base‐rich soils? Since habitat loss and fragmentation have caused ancient forest species to decline, those species are the main focus of this study. Location: Three ancient forests, along a soil gradient from acidification‐sensitive to base‐rich, were studied: Limbrichterbosch and Savelsbos in The Netherlands and Holtkrat in Denmark. Methods: Canopy and soil surveys along transects generated data for Redundancy Analysis on tree – humus relationships. We analysed the distribution of forest plant species with Canonical Correspondence Analysis. The explanatory factors were soil characteristics (pH, organic matter, loam content and thickness of the humus layers), external crown projection, ground water and canopy data. We further analysed the relationship between forest species and humus characteristics with Spearman correlations. Results: Tree species have a significant impact on humus characteristics through the nature of their litter. Humus characteristics significantly explain the distribution of forest understorey species. The pH of the first 25 cm mineral soil and the thickness of the F‐ (fermentation) layer are the primary factors affecting the distribution of ancient forest species. Conclusion: This study indicates that the species composition of the forest canopy affects the distribution of forest understorey species. Ancient forest species are more abundant and frequent underneath trees with base‐rich litter. On acidification‐sensitive soils these relationships were stronger than on more base‐rich, loamy soils.  相似文献   

5.
Adventitious root formation by debladed petiole cuttings of English ivy (Hedera helix L.) proceeds via a direct rooting pattern for the easy-to-root juvenile phase, while the difficult-to-root mature phase roots through an indirect rooting pattern. Juvenile petiole cuttings treated with -naphthaleneacetic acid (NAA, 100 M) plus the polyamine biosynthesis inhibitor, difluoromethylarginine (DFMA, 1 mM), formed an increased number of roots per cutting initiated by the indirect rooting pattern. The increased root formation and change in rooting pattern were reversed by the addition of putrescine (1 mM). Delaying auxin application to petiole cuttings for 15 days also induced juvenile petioles to root by the indirect pattern. This could be reversed by rewounding the base of the cutting prior to auxin application after day 15. The data support the use of the terms competent root-forming cells and induced competent root-forming cells to describe the target cells for the initial events of root formation for the direct and indirect rooting patterns, respectively.Kentucky Experiment Station publication 90-10-122.  相似文献   

6.
Nitric oxide (NO) is a multifunctional molecule involved in numerous physiological processes in plants. In this study, we investigate the spatiotemporal changes in NO levels and endogenous NO‐generating system in auxin‐induced adventitious root formation. We demonstrate that NO mediates the auxin response, leading to adventitious root formation. Treatment of explants with the auxin indole‐3‐butyric acid (IBA) plus the NO donor sodium nitroprusside (SNP) together resulted in an increased number of adventitious roots compared with explants treated with SNP or IBA alone. The action of IBA was significantly reduced by the specific NO scavenger, 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (c‐PTIO), and the nitric oxide synthase (NOS, enzyme commission 1.14.13.39) inhibitor, NG‐nitro‐l ‐arg‐methyl ester (l ‐NAME). Detection of endogenous NO by the specific probe 4,5‐diaminofluorescein diacetate and survey of NADPH–diaphorase activity (commonly employed as a marker for NOS activity) by histochemical staining revealed that during adventitious root formation, NO and NADPH–diaphorase signals were specifically located in the adventitious root primordia in the basal 2‐mm region (as zone I) of both control and IBA‐treated explants. With the development of root primordia, NO and NADPH–diaphorase signals increased gradually and were mainly distributed in the root meristem. Endogenous NO and NADPH–diaphorase activity showed overall similarities in their tissue localization. Distribution of NO and NADPH–diaphorase activity similar to that in zone I were also observed in the basal 2–4‐mm region (zone II) of IBA‐treated explants, but neither NO nor NADPH–diaphorase signals were detected in this region of the control explants. l ‐NAME and c‐PTIO inhibited the formation of adventitious roots induced by IBA and reduced both NADPH–diaphorase staining and NO fluorescence. These results show the dynamic distribution of endogenous NO in the developing root primordia and demonstrate that NO plays a vital role in IBA‐induced adventitious rooting. Also, the production of NO in this process may be catalyzed by a NOS‐like enzyme.  相似文献   

7.
Franck Jabot  Théophile Lohier 《Oikos》2016,125(12):1733-1742
The importance of environmental stochasticity for tropical tree dynamics has been recently stressed by several studies. This has spurred the development of a ‘time‐averaged neutral model’ of community dynamics by Kalyuzhny and colleagues that extends the neutral model by incorporating environmental stochasticity. We here show that this framework can be used to assess the presence of non‐random correlations between species dynamics. Indeed, the time‐averaged neutral model makes the simplifying assumption that species responses to environmental variation are uncorrelated. We therefore propose to use this model as a null hypothesis against which observed community dynamics can be compared. This study makes five contributions. First, we describe a novel time‐averaged neutral model of community dynamics that is close to, but more flexible than the one previously proposed by Kalyuzhny and colleagues. Second, we develop an inference method based on approximate Bayesian computation (ABC) and demonstrate the identifiability of the model parameters from community time series data. Third, we develop a test of the significance of environmental stochasticity, and a method to quantify its contribution to population variance. Fourth, we develop a test of non‐random correlation between species dynamics. Fifth, we apply these developments to three datasets of tropical tree dynamics. We evidence both a strong contribution of environmental stochasticity to population variance in the three datasets, and a non‐random correlation of species dynamics in one of them. We finally discuss the implications of these results for the modelling of tropical tree community dynamics.  相似文献   

8.
Molecular mechanism of adventitious root formation in rice   总被引:1,自引:0,他引:1  
Adventitious roots account for the majority of the rice root system and play an irreplaceable role in rice growth and development. Rice adventitious roots are formed by division of the innermost ground meristem cells in the central cylinder, and some lateral roots are observable in the adventitious root system. Multiple hormones have been implicated in the regulation of root development. Auxin is involved in the initiation of adventitious roots, whereas cytokinin inhibits adventitious root initiation, but promotes adventitious root elongation. Other phytohormones such as nitric oxide, ethylene, brassinosteroid, jasmonic acid and gibberellin may be also involved in regulating adventitious root initiation and development. Additionally, more than 600 root development related quantitative trait loci (QTLs) have been located by QTL analysis of root traits.  相似文献   

9.
Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species.  相似文献   

10.
Adventitious root formation by debladed petiole cuttings of English ivy (Hedera helix L.) proceeds via a direct rooting pattern for the easy-to-root juvenile phase, while the difficult-to-root mature phase roots through an indirect rooting pattern. Juvenile petiole cuttings treated with α-naphthaleneacetic acid (NAA, 100 μM) plus the polyamine biosynthesis inhibitor, difluoromethylarginine (DFMA, 1 mM), formed an increased number of roots per cutting initiated by the indirect rooting pattern. The increased root formation and change in rooting pattern were reversed by the addition of putrescine (1 mM). Delaying auxin application to petiole cuttings for 15 days also induced juvenile petioles to root by the indirect pattern. This could be reversed by rewounding the base of the cutting prior to auxin application after day 15. The data support the use of the terms “competent root-forming cells” and “induced competent root-forming cells” to describe the target cells for the initial events of root formation for the direct and indirect rooting patterns, respectively.  相似文献   

11.
植物激素与不定根的形成   总被引:15,自引:0,他引:15  
江玲  管晓春 《生物学通报》2000,35(11):17-19
高水平的生长素可诱导不定根原基发生,高水平的脱落酸似乎有同样的作用,但效应不如生长素强;赤霉素似乎可增强生长素对不定根原基的诱导作用,却抑制脱落酸的诱导作用;细胞分裂素抑制不定根的发生;且上述激素处理都具有时效性;而乙烯似乎与不定根的发生无直接关系;SA和JA在不定根形成中可能只影响内源生长素和细胞分裂素的合成和代谢。  相似文献   

12.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

13.
We have examined the toxicity of ethanol in tissue culture of the apple rootstock ‘Jork 9’. During proliferation through axillary branching, 0.2% (v/v) ethanol slightly stimulated proliferation whereas significant inhibition occurred at concentrations of 0.4 % or higher. In adventitious root formation, significant inhibition occurred at concentrations of 0.1 % or higher. The effect of ethanol was stage-dependent: during the induction period (i.e. from 24 to 72 h after the start of the rooting treatment), there was little or no inhibition. During autoclaving, ethanol evaporated to ca. 50 %. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Seed banks are of vital importance for local plant persistence and recruitment, for maintaining both plant and genetic diversity and for habitat restoration. Yet, seed-bank dynamics, particularly on the long term and in deciduous forests, remain poorly understood. Additionally, information on compositional seed-bank differences under contrasting tree canopies remains scarce.This study aims at quantifying long-term seed-bank dynamics by sampling vegetation and seed banks along a four-stage successional chronosequence (40, 80, 120 and 250 years) using 12 10 m×10 m plots per forest stand age–class under fully developed oak–hornbeam and beech canopies.Seed banks were remarkably abundant and diverse. Species richness and seed density declined steeply with forest stand age, regardless of canopy species. Seed-bank composition differed significantly with stand age, yet also with tree species. Most likely, tree species-dependent ecosystem engineer effects on light availability and possibly also litter quality affect the seed bank through the vegetation. Compositional differences between seed banks from stands with a different canopy diminished with increasing stand age, possibly due to a gradual loss of species with a less persistent seed bank.Long-term seed-bank dynamics in deciduous forests seem to consist predominantly of a unidirectional and predictable depletion of the seed bank as long as large disturbances, which would allow seed-bank replenishment of early-successional species, are lacking. Furthermore, forest seed-banks appear to converge upon a characteristic seed bank in the later stages of forest development, irrespective of canopy composition, driven by seed-bank depletion and limited input from the herb layer.  相似文献   

15.
16.
Indole-3-butyric acid (IBA, 10−4 M ), spermine (7 × 10−5 M ) and vitamin D2 (6.3 × 10−5 M ), all of which enhance rooting in mung bean cuttings ( Phaseolus aureus Roxb. cv. Berkin), influence RNA metabolism. Total and poly (A)+-RNA synthesis within the hypocotyl is inhibited by each of these chemicals within 24 h. These changes precede induced cell division and are therefore associated with the so-called inductive period of regeneration during which some cells in the hypocotyl undergo dedifferentiation. However, following subsequent transfer of cuttings to borate, which is an essential prerequisite for development of root primordia in these cuttings, RNA synthesis is enhanced by pretreatments with IBA, spermine or vitamin D2. Furthermore, IBA inhibits synthesis and turnover of protein within the hypocotyl.  相似文献   

17.
In recent decades, many forest die‐off events have been reported in relation to climate‐change‐induced episodes, such as droughts and heat waves. To understand how these extreme climatic events induce forest die‐off, it is important to find a tool to standardize the climatic conditions experienced by different populations during a specific climatic event, taking into account the historic climatic conditions of the site where these populations live (bioclimatic niche). In this study, we used estimates of climatic suitability calculated from species distribution models (SDMs) for such purpose. We studied forest die‐off across France during the 2003 heatwave that affected Western Europe, using 2,943 forest inventory plots dominated by 14 single tree species. Die‐off severity was estimated by Normalized Difference Vegetation Index (NDVI) loss using Moderate‐resolution Imaging Spectroradiometer remote sensor imagery. Climatic suitability at the local level during the historical 1979–2002 period (HCS), the episode time (2003; ECS) and suitability deviance during the historical period (HCS‐SD) were calculated for each species by means of boosted regression tree models using the CHELSA climate database and occurrences extracted from European forest inventories. Low HCS‐SD and high mean annual temperature explained the overall regional pattern of vulnerability to die‐off across different monospecific forests. The combination of high historical and low episode climatic suitability also contributed significantly to overall forest die‐off. Furthermore, we observed different species‐specific relationships between die‐off vulnerability and climatic suitability: Sub‐Mediterranean and Mediterranean species tended to be vulnerable in historically more suitable localities (high HCS), whereas Euro‐Siberian species presented greater vulnerability when the hot drought episode was more intense. We demonstrated that at regional scale, past climatic legacy plays an important role in explaining NDVI loss during the episode. Moreover, we demonstrated that SDMs‐derived indexes, such as HCS, ECS and HCS‐SD, could constitute a tool for standardizing the ways that populations and species experience climatic variability across time and space.  相似文献   

18.
Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP.  相似文献   

19.
Large‐bodied frugivorous birds play an important role in dispersing large‐sized seeds in Neotropical rain forests, thereby maintaining tree species richness and diversity. Conversion of contiguous forest land to forest fragments is thought to be driving population declines in large‐bodied frugivores, but the mechanistic drivers of this decline remain poorly understood. To assess the importance of fragment‐level versus local landscape attributes in influencing the species richness of large‐bodied (>100 g) frugivorous birds, we surveyed 15 focal species in 22 forest fragments (2.7 to 33.6 ha, avg. = 16.0 ha) in northwest Ecuador in 2014. Fragment habitat variables included density of large trees, canopy openness and height, and fragment size; landscape variables included elevation and the proportion of tree cover within a 1 km radius of each fragment. At both the individual species level, and across the community of 12 species of avian frugivore we detected, there was higher richness and probability of presence in fragments with more tree cover on surrounding land. This tendency was particularly pronounced among some endangered species. These findings corroborate the idea that partially forested land surrounding fragments may effectively increase the suitable habitat for forest‐dwelling frugivorous birds in fragmented landscapes. These results can help guide conservation priorities within fragmented landscapes, with particular reference to retaining trees and reforesting to attain high levels of tree cover in areas between forest patches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号