首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing.In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 °C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 °C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.  相似文献   

2.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.  相似文献   

3.
The HIV fusion peptide (HFP) is a biologically relevant model system to understand virus/host cell fusion. 2H and 31P NMR spectroscopies were applied to probe the structure and motion of membranes with bound HFP and with a lipid headgroup and cholesterol composition comparable to that of membranes of host cells of HIV. The lamellar phase was retained for a variety of highly fusogenic HFP constructs as well as a non-fusogenic HFP construct and for the influenza virus fusion peptide. The lamellar phase is therefore a reasonable structure for modeling the location of HFP in lipid/cholesterol dispersions. Relative to no HFP, membrane dispersions with HFP had faster 31P transverse relaxation and faster transverse relaxation of acyl chain 2H nuclei closest to the lipid headgroups. Relative to no HFP, mechanically aligned membrane samples with HFP had broader 31P signals with a larger fraction of unoriented membrane. The relaxation and aligned sample data are consistent with bilayer curvature induced by the HFP which may be related to its fusion catalytic function. In some contrast to the subtle effects of HFP on a host-cell-like membrane composition, an isotropic phase was observed in dispersions rich in phosphatidylethanolamine lipids and with bound HFP.  相似文献   

4.
Photosynthetic membranes contain considerable regions of high surface curvature, notably at their margins, where the average radius of curvature is about 10 nm. The proportion of total membrane lipid in the outer and inner thylakoid margin monolayers is estimated at 21% and 13%, respectively. The major thylakoid lipid, monogalactosyldiacylglycerol, is roughly cone-shaped and will not form complete lamellar bilayer phases, even in combination with other thylakoid lipids. It is proposed that this galactolipid plays a role in: (a) stabilising regions of concave curvature in thylakoids; and (b) packaging hydrophobic proteins in planar bilayer regions by means of inverted micelles. This model predicts substantial asymmetries in the distribution of lipids both across and along the thylakoid bilayer plane.  相似文献   

5.
Equinatoxin II (EqtII) is a pore-forming protein from Actinia equina that lyses red blood cell and model membranes. Lysis is dependent on the presence of sphingomyelin (SM) and is greatest for vesicles composed of equimolar SM and phosphatidylcholine (PC). Since SM and cholesterol (Chol) interact strongly, forming domains or “rafts” in PC membranes, 31P and 2H solid-state NMR were used to investigate changes in the lipid order and bilayer morphology of multilamellar vesicles comprised of different ratios of dimyristoylphosphatidylcholine (DMPC), SM and Chol following addition of EqtII. The toxin affects the phase transition temperature of the lipid acyl chains, causes formation of small vesicle type structures with increasing temperature, and changes the T2 relaxation time of the phospholipid headgroup, with a tendency to order the liquid disordered phases and disorder the more ordered lipid phases. The solid-state NMR results indicate that Chol stabilizes the DMPC bilayer in the presence of EqtII but leads to greater disruption when SM is in the bilayer. This supports the proposal that EqtII is more lytic when both SM and Chol are present as a consequence of the formation of domain boundaries between liquid ordered and disordered phases in lipid bilayers leading to membrane disruption.  相似文献   

6.
The interaction with model membranes of a peptide, EqtII1–32, corresponding to the N‐terminal region of the pore‐forming toxin equinatoxin II (EqtII) has been studied using solid‐state NMR and molecular dynamics (MD) simulations. The distances between specifically labeled nuclei in [19F‐para]Phe16‐[1‐13C]Leu19 and [19F‐para]Phe16‐[15N]Leu23 analogs of EqtII1–32 measured by REDOR in lyophilized peptide were in agreement with published crystal and solution structures. However, in both DMPC and mixed DMPC:SM membrane environments, significant changes in the distances between the labeled amino acid pairs were observed, suggesting changes in helical content around the experimentally studied region, 16–23, in the presence of bilayers. 19F‐31P REDOR experiments indicated that the aromatic ring of Phe16 is in contact with lipid headgroups in both membrane environments. For the DMPC:SM mixed bilayers, a closer interaction between Phe16 side chains and lipid headgroups was observed, but an increase in distances was observed for both labeled amino acid pairs compared with those measured for EqtII1–32 in pure DMPC bilayers. The observed differences between DMPC and DMPC:SM bilayers may be due to the greater affinity of EqtII for the latter. MD simulations of EqtII1–32 in water, on a pure DMPC bilayer, and on a mixed DMPC:SM bilayer indicate significant peptide secondary structural differences in the different environments, with the DMPC‐bound peptide adopting helical formations at residues 16–24, whereas the DMPC:SM‐bound peptide exhibits a longer helical stretch, which may contribute to its enhanced activity against PC:SM compared with pure PC bilayers. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
《Biophysical journal》2019,116(9):1701-1718
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.  相似文献   

8.
Amyloid β-peptide (Aβ) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of Aβ with lipid bilayers by multinuclear NMR using 31P nuclei. We found that Aβ (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPC), to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of Aβ (1-40), as viewed from 31P NMR. The difference of the isotropic peak intensity between DMPC/Aβ and DMPC/GM1/Aβ suggests a specific interaction between Aβ and GM1. We show that in the DMPC/GM1/Aβ system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the Aβ peptide, and facilitated by GM1.  相似文献   

9.
31P-NMR spectra at 162 MHz were used to monitor phase changes of wheat thylakoid membranes as a function of temperature. At room temperature the31P-NMR line was a superposition of anisotropic component characteristic of phospholipid lamellar phase and isotropic line due to inorganic phosphorus or small membrane vesicles arising as an effect of preparation. For temperatures higher than +35 °C an increase of the isotropic component occurs, which is irreversible as the sample is cooled. For the temperatures between +55 °C and +60 °C the presence of the hexagonal phase cylinders is suggested, as monitored by phosphorus lineshape. However, the addition of glycerol stimulates a formation of the isotropic phase. The effect of reconstitution of freeze-dried thylakoid membranes by addition of water or water-glycerol medium to the sample was examined. As lyophilizate was gradually diluted, the increase of isotropic line component was observed. For thylakoid membranes suspended in D2O at the highest dilution examined, the line contribution due to small membrane fragments is not greater than 50%, but in presence of glycerol, this contribution could reach 70%. This suggests that the presence of glycerol increases the formation of the small membrane particles as the thylakoid membrane is reconstituted from lyophilizate. The wheat thylakoid membranes reconstituted from lyophilizate show, in comparison to native membranes, the increased contribution of small membrane vesicles. Moreover, the31P -NMR spectra suggest the appearance of the hexagonal phase cylinders even at +50 °C.Abbreviations DGDG digalactosyldiacylglycerol - DLPC dilinoleoyl phosphatidylcholine - DLPE dilinoleoyl phosphatidylethanolamine - EDTA ethylenediamine-tetraacetic acid - MGDG monogalactosyldiacylglycerol - NMR nuclear magnetic resonance - PC phosphatidylcholine - PG phosphatidylglycerol - PSII photosystem II - TGDG trigalactosyldiacylglycerol - Tris Tris-(hydroxymethyl)-aminomethan - S/N signal to noise ratio  相似文献   

10.
The small heat shock protein (sHsp) chaperones are crucial for cell survival and can prevent aggregation of client proteins that partially unfold under destabilizing conditions. Most investigations on the chaperone activity of sHsps are based on a limited set of thermosensitive model substrate client proteins since the endogenous targets are often not known. There is a high diversity among sHsps with a single conserved β‐sandwich fold domain defining the family, the α‐crystallin domain, whereas the N‐terminal and C‐terminal regions are highly variable in length and sequence among various sHsps and conserved only within orthologues. The endogenous targets are probably also varying among various sHsps, cellular compartments, cell type and organism. Here we have investigated Hsp21, a non‐metazoan sHsp expressed in the chloroplasts in green plants which experience huge environmental fluctuations not least in temperature. We describe how Hsp21 can also interact with the chloroplast thylakoid membranes, both when isolated thylakoid membranes are incubated with Hsp21 protein and when plants are heat‐stressed. The amount of Hsp21 associated with the thylakoid membranes was precisely determined by quantitative mass spectrometry after metabolic 15N‐isotope labeling of either recombinantly expressed and purified Hsp21 protein or intact Arabidopsis thaliana plants. We found that Hsp21 is among few proteins that become associated with the thylakoid membranes in heat‐stressed plants, and that approximately two thirds of the pool of chloroplast Hsp21 is affected. We conclude that for a complete picture of the role of sHsps in plant stress resistance also their association with the membranes should be considered.  相似文献   

11.
To gain a better understanding of the biological role of polyunsaturated phospholipids, infrared (IR) linear dichroism, NMR, and x-ray diffraction studies have been conducted on the lyotropic phase behavior and bilayer dimensions of sn-1 chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35), a mixed-chain saturated (18:0)-polyunsaturated (22:6 omega 3) lipid. SDPC films were hydrated at definite values of temperature (T) and relative humidity (RH). In excess water, the lipid forms exclusively lamellar phases in the temperature range 0--50 degrees C. Upon dehydration the lipid undergoes the main phase transition between the liquid-crystalline (L(alpha)) and gel (L(beta)) phase at T < 15 degrees C. Both the saturated and polyunsaturated chains adopt a stretched conformation in the L(beta) phase, presumably the all-trans (stearoyl) and angle iron or helical (docosahexaenoyl) one. A new fluid lamellar phase (L(alpha)') was found in partially hydrated samples at T > 15 degrees C. SDPC membranes expand laterally and contract vertically in the L(alpha)' phase when water was removed. This tendency is in sharp contrast to typical dehydration-induced changes of membrane dimensions. The slope of the phase transition lines in the RH-T phase diagram reveal that the lyotropic L(alpha)'-L(alpha) and L(beta)-L(alpha) transitions are driven by enthalpy and entropy, respectively The possible molecular origin of the phase transitions is discussed. The properties of SDPC are compared with that of membranes of monounsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC-d31).  相似文献   

12.
Lactoferricin (LfB) is a 25‐residue innate immunity peptide released by pepsin from the N‐terminal region of bovine lactoferrin. A smaller amidated peptide, LfB6 (RRWQWR‐NH2) retains antimicrobial activity and is thought to constitute the “antimicrobial active‐site” (Tomita, Acta Paediatr Jpn. 1994; 36 : 585–91). Here we report on N‐acylation of 1‐Me‐Trp5‐LfB6, Cn‐RRWQ[1‐Me‐W]R‐NH2, where Cn is an acyl chain having n = 0, 2, 4, 6 or 12 carbons. Tryptophan 5 (Trp5) was methylated to enhance membrane binding and to allow for selective deuteration at that position. Peptide/lipid interactions of Cn‐RRWQ[1‐Me‐W ]R‐NH2 (deuterated 1‐Me‐Trp5 underlined), were monitored by solid state 31P NMR and 2H NMR. The samples consisted of macroscopically oriented bilayers of mixed neutral (dimyristoylphosphatidylcholine, DMPC) and anionic (dimyristoylphosphatidylglycerol, DMPG) lipids in a 3:1 ratio with Cn‐RRWQ[&1‐Me‐W ]R‐NH2 peptides added at a 1:25 peptide to lipid ratio. 2H‐NMR spectra reveal that the acylated peptides are well aligned in DMPC:DMPG bilayers. The 2H NMR quadrupolar splittings suggest that the 1‐Me‐Trp is located in a motionally restricted environment, indicating partial alignment at the membrane interface. 31P‐NMR spectra reveal that the lipids are predominantly in a bilayer configuration, with little perturbation by the peptides. Methylation alone, in C0‐RRWQ[1‐Me‐W ]R‐NH2, resulted in a 3–4 fold increase in antimicrobial activity against E. coli. N‐acylation with a C12 fatty acid enhanced activity almost 90 fold. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The photosynthetic performance of the desiccation‐tolerant, intertidal macro‐algae Ulva prolifera was significantly affected by sorbitol‐induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non‐photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700+ in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non‐photochemical energy dissipation in PS I due to acceptor‐side limitation (Y(NA)) during rehydration in seawater containing DCMU.  相似文献   

14.
The transitions lamellar → cubic → hexagonal in the aqueous system of sunflower oil monoglycerides are analysed. X-Ray diffraction data show linear relationships between the lattices of the three phases, which are discussed on the basis of structures formed by lipid bilayer units. The cubic structure is related to ‘Schwarz's primitive cubic minimal surface’ and consists of a three-dimensional continuous bilayer system separating two separate water channel systems.It is also pointed out that the three-dimensional membrane system in plant plastids, the prolamellar body, which is involved in the formation of thylakoid membranes of chloroplasts, has a structure which is closely related to or identical with that of the cubic phase of monoglyceride-water systems.  相似文献   

15.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

16.
The phase equilibria in mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE) and water were studied by 31P-NMR and 2H-NMR. The chemical shift anisotropy is greater for DOPC than for DOPE (6–9 ppm in the lamellar phase). This difference can most probably be ascribed to different order parameters for the two lipid head groups. 31P-NMR spectra recorded from a lamellar phase formed by DOPC-DOPE-water below maximum hydration exhibit two resolved, superimposed powder spectra. The chemical shift anisotropy for both phospholipids has greater values at excess water contents than below maximum hydration, and the spectral resolution between DOPC and DOPE in the lamellar phase is strikingly diminished at excess water contents. From 31P-NMR spectra it is possible to observe relative differences in composition between different lipid phase existing in equilibrium. The proportion of DOPE is decreased in the lamellar phase, and is increased in the reversed hexagonal phase, when these phases exist in equilibrium.  相似文献   

17.
Ternary systems of palmitoyl-oleoyl-phosphatidylcholine (POPC) and the non-ionic surfactant C12EO2 (di-ethylene-oxide-mono-dodecyl-ether) in water have been studied with optical microscopy, NMR, DSC and X-rays from ambient temperatures to 45 °C. Below 29 °C the system is in the lamellar liquid crystalline state. Between 30 and 32 °C it transforms into a cubic Ia3d structure which converts into the cubic Pn3m phase at 39 °C. The transitions are fully reversible. An epitaxial relationship between all three phases was found, which is an elegant and convenient way to rearrange molecules from lamellar bilayers to a network of curved surfaces. The la3d (Q230) to Pn3m (Q224) transition occurs without measurable enthalpy change. This, together with the metric relation of 1.60 between the cubic lattice constants is strong evidence for a Bonnet transformation, where the structural changes occur without change in curvature. The potential significance of the cubic phases as intermediate structures for biological processes, e. g. transport across a bilayer or fusion of membranes, are discussed.  相似文献   

18.
A new type of lipid organization is observed in mixtures of phosphatidylcholine with cardiolipin (in the presence of Ca2+), monoglucosyldiglyceride and phosphatidylethanolamine (in the presence of cholesterol). This phase is characterised by an isotropic 31P NMR signal and is visualised by freeze-fracturing as particles and pits on the fracture faces of the lipid bilayer. As the most favourable model for this phase we propose the inverted micelle sandwiched in between the two monolayers of the lipid bilayer.  相似文献   

19.
A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the hydrocarbon chain orients parallel to the magnetic field. This is explained by the fact that gramicidin aligns with its helical axis parallel to the magnetic field, thereby forcing also the DDAO-d31 molecules to obtain such an orientation.  相似文献   

20.
Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (SCD) of DMPC approach very large values of ≈0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10−100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号