首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spider web research bridges ethology, ecology, functional morphology, material science, development, genetics, and evolution. Recent work proposes the aerial orb web as a one‐time key evolutionary innovation that has freed spider‐web architecture from substrate constraints. However, the orb has repeatedly been modified or lost within araneoid spiders. Modifications include not only sheet‐ and cobwebs, but also ladder webs, which secondarily utilize the substrate. A recent nephilid species level phylogeny suggests that the ancestral nephilid web architecture was an arboricolous ladder and that round aerial webs were derived. Because the web biology of the basalmost Clitaetra and the derived Nephila are well understood, the present study focuses on the webs of the two phylogenetically intervening genera, Herennia and Nephilengys, to establish ontogenetic and macroevolutionary patterns across the nephilid tree. We compared juvenile and adult webs of 95 Herennia multipuncta and 143 Nephilengys malabarensis for two measures of ontogenetic allometric web changes: web asymmetry quantified by the ladder index, and hub asymmetry quantified by the hub displacement index. We define a ‘ladder web’ as a vertically elongated orb exceeding twice the length over width (ladder index ≥ 2) and possessing (sub)parallel rather than round side frames. Webs in both genera allometrically grew from orbs to ladders, more so in Herennia. Such allometric web growth enables the spider to maintain its arboricolous web site. Unexpectedly, hub asymmetry only increased significantly in heavy‐bodied Nephilengys females, and not in Herennia, challenging the commonly invoked gravity hypothesis. The findings obtained in the present study support the intrageneric uniformness of nephilid webs, with Herennia etruscilla webs being identical to H. multipuncta. The nephilid web evolution suggests that the ancestor of Nephila reinvented the aerial orb web because the orb arises at a much more inclusive phylogenetic level, and all intervening nephilids retained the secondarily acquired substrate‐dependent ladder web. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 849–866.  相似文献   

3.
Abstract Environmental conditions such as light level, background contrast and temperature might influence a spider's prey capture success and risk of predation. Thus it may often be advantageous for spiders to adjust web‐building behaviour in response to variation in these environmental conditions. This hypothesis was examined in a study of the construction of webs and web decorations (conspicuous strands of silk at the hub of the web) of the orb‐web spider Argiope keyserlingi. Web decorations are thought to have one or more separate functions. They may attract prey, deter predators or advertise the web to oncoming birds, thus preventing web damage. In this series of experiments, relationships between weather parameters and the construction of webs and web decorations were considered. In complementary laboratory experiments, A. keyserlingi spiders were exposed to two different light levels (700 and 90 lx), background contrasts (black and white) and temperature conditions (20 and 26°C). Of the available weather parameters, only temperature was significantly related to web decorating behaviour but not to web size. In the laboratory, temperature also influenced web‐decorating behaviour, and spiders in dim light (700 lx) constructed larger webs and longer decorations. Background contrast did not significantly alter web size or web decorations. These data suggest that when prey availability is reduced at low temperatures, spiders may use web decorations to attract prey to the web. Similarly, in dim light, spiders may build more and larger decorations to increase the visual signal to approaching prey or to advertise the web to oncoming birds.  相似文献   

4.
Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.  相似文献   

5.
The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml−1) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN.  相似文献   

6.
7.
Sexual selection, through female choice and/or male–male competition, has influenced the nature and direction of sexual size dimorphism in numerous species. However, few studies have examined the influence of sperm competition on size dimorphism. The orb‐web spider Nephila edulis has a polygamous mating system and extreme size dimorphism. Additionally, the frequency distribution of male body size is extremely skewed with most males being small and few large. The duration of copulation, male size and sexual cannibalism have been identified as the significant factors determining patterns of sperm precedence in spiders. In double mating trials, females were assigned to three treatments: either they mated once with both males or the first or the second male was allowed to mate twice. Paternity was strongly associated with the duration of copulation, independent of mating order. Males that were allowed to mate twice not only doubled the duration of copulation but also their paternity. Small males had a clear mating advantage, they copulated longer than large males and fertilized more eggs. Males of different sizes used different tactics to mate. Large males were more likely to mate through a hole they cut into the web, whereas small males approached the female directly. Furthermore, small males usually mated at their first attempt but large males required several attempts before mating took place. There was no obvious female reaction towards males of different sizes.  相似文献   

8.
A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light‐cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment.  相似文献   

9.
Reproduction and related traits such as mating success are strongly affected by thermal stress. We tested direct and correlated responses to artificial selection in replicated lines of Drosophila buzzatii that were selected for mating success at high temperature. Knockdown resistance at high temperature (KRHT) and chill‐coma recovery (CCR) were tested as correlated selection responses. Virgin flies were allowed to mate for four hours at 33°C in three replicated lines (S lines) to obtain the selected flies and then returned at 25°C to lay eggs. Other three replicated lines were maintained at 25°C without any selection as control (C lines). After 15 selection generations, KRHT and CCR were measured. Both traits were assessed in flies that did not receive any hardening pretreatments as well as in flies that were either heat or cold hardened. Thermotolerance traits showed significant correlated responses with higher KRHT in S than in C lines, both with a heat‐hardening pretreatment and without a heat‐hardening pretreatment. CCR time was longer in S than in C lines both with a cold‐hardening pretreatment and without a cold‐hardening pretreatment. Hardening treatments improved both KRHT and CCR in all cases excepting KRHT in C lines. Overall, KRHT and CCR showed an antagonistic pattern of correlated responses to our selection regime, suggesting either pleiotropy or tightly linked trait‐specific genes partially affecting KRHT and CCR.  相似文献   

10.
Heat‐shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat‐shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat‐shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in “omic” quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat‐shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade‐offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.  相似文献   

11.
The extent and intensity of artificial night lighting has increased with urban development worldwide. The resulting light pollution is responsible for mortality among many Procellariiformes species which show nocturnal activity on their breeding grounds. Here, we report light‐induced mortality of Procellariiformes during a 9‐year study (1998–2006) on Tenerife, the largest island of the Canary archipelago. A total of 9880 birds from nine species were found grounded, the majority being Cory’s Shearwaters Calonectris diomedea (93.4%). For this species the majority of grounded birds were fledglings (96.4%), which fall apparently while leaving their nesting colony for the first time; for the smaller species (storm‐petrels) adult birds were more often grounded than fledglings. For almost all species, grounding showed a seasonal pattern linked with their breeding cycle. Certain phases of the moon influenced grounding of Cory’s Shearwater, with the extent of grounding being reduced during phases of full moon. The percentage of fledglings attracted to lights in relation to the fledglings produced annually varied between species and years (0–1.3% for the Madeiran Storm‐petrel Oceanodroma castro; 41–71% for Cory’s Shearwater). Mean adult mortality rates also varied between species (from 0.4% for the European Storm‐petrel Hydrobates pelagicus and the Cory’s Shearwater, to 2.3% for the Manx Shearwater Puffinus puffinus). Here we show that light‐induced mortality rates are of concern, at least for petrels and small shearwaters. Thanks to efforts involving civil cooperation, 95% of grounded birds have been returned to the wild. To minimize the impact of artificial lights on petrels we recommend several conservation measures: continuing rescue campaigns, alteration of light signatures and reduction of light emissions during the fledging peaks. Furthermore, we recommend that a monitoring program for petrel populations be implemented, as well as further studies to assess the fate of released fledglings and continued research to address why petrels are attracted to lights.  相似文献   

12.
Hypocotyl growth during seedling emergence is a crucial developmental transition influenced by light and phytohormones such as ethylene. Ethylene and light antagonistically control hypocotyl growth in either continuous light or darkness. However, how ethylene and light regulate hypocotyl growth, including seedling emergence, during the dark‐to‐light transition remains elusive. Here, we show that ethylene and light cooperatively stimulate a transient increase in hypocotyl growth during the dark‐to‐light transition via the light‐mediated stabilization of 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthases (ACSs), the rate‐limiting enzymes in ethylene biosynthesis. We found that, in contrast to the known inhibitory role of light in hypocotyl growth, light treatment transiently increases hypocotyl growth in wild‐type etiolated seedlings. Moreover, ACC, the direct precursor of ethylene, accentuates the effects of light on hypocotyl elongation during the dark‐to‐light transition. We determined that light leads to the transient elongation of hypocotyls by stabilizing the ACS5 protein during the dark‐to‐light transition. Furthermore, biochemical analysis of an ACS5 mutant protein bearing an alteration in the C‐terminus indicated that light stabilizes ACS5 by inhibiting the degradation mechanism that acts through the C‐terminus of ACS5. Our study reveals that plants regulate hypocotyl elongation during seedling establishment by coordinating light‐induced ethylene biosynthesis at the post‐translational level. Moreover, the stimulatory role of light on hypocotyl growth during the dark‐to‐light transition provides additional insights into the known inhibitory role of light in hypocotyl development.  相似文献   

13.
We observed the first case of host‐behavioral manipulation of an orb‐weaver spider Argiope argentata induced by a parasitoid wasp of the genus Acrotaphus. The modified web is similar of those constructed by other orb weavers attacked by wasps of the close related genus Hymenoepimecis. The stick spirals and radii are absent and the web is composed of a three‐dimensional structure of non adhesive threads. The discovery of the ability to induce changes in host's web‐building behavior in Acrotaphus is indicative that this trait may be primitively present in the clade that includes the genus Hymenoepimecis.  相似文献   

14.
The alternation of light and dark periods on a daily or seasonal time scale is of utmost importance for the synchronization of physiological and behavioral processes in the environment. For the last 2 decades, artificial light at night (ALAN) has strongly increased worldwide, disrupting the photoperiod and its related physiological processes, and impacting the survival and reproduction of wild animals. ALAN is now considered as a major concern for biodiversity and human health. Here, we present why insects are relevant biological models to investigate the impact of ALAN. First the phenotypic responses to ALAN and their underpinning mechanisms are reviewed. The consequences for population dynamics, and the community composition and functioning are described in the second part. Because ALAN provides new and widespread selective pressure, we inventory evolutionary changes in response to this anthropogenic change. Finally, we identify promising future avenues, focusing on the necessity of understanding evolutionary processes that could help stakeholders consider darkness as a resource to preserve biodiversity as well as numerous ecosystem services in which insects are involved.  相似文献   

15.
The Australasian‐Pacific and South‐East Asian species of the new orb‐weaving spider genus Plebs with Plebs eburnus (Keyserling, 1886) as type species are revised. Following this study, Plebs includes a total of 22 species of which seven are here described new. Seven species are found in Australia, two in the Pacific region (New Caledonia, Vanuatu), and two in South‐East Asia (Papua New Guinea, The Philippines). Eleven Asian species are transferred to the new genus. Plebs represent comparatively small orb‐weaving spiders of c. 1.2–15.0 mm body length with a slightly elongated abdomen and humeral (shoulder) humps. Males of most species have two to three stout setae on the ventral side of their fourth coxae. Male pedipalps are characterized by the presence of a single macroseta on the patella, the presence of a paramedian apophysis as basal extension of the conductor, and an apical tegular protrusion. The female epigyne has a scape that is generally much longer than wide. It does not have a terminal pocket and is frequently broken off in a number of species. A phylogenetic analysis of 15 species of Plebs (those for which both sexes are known), 13 Australian/Pacific orb‐weaving spider species representing the most commonly collected clades with paramedian apophysis, three species of Nearctic Eriophora Simon, 1864, and Araneus diadematus Clerck, 1758, as outgroup, identified a single synapomorphy of Plebs based on 35 morphological and three behavioural characters: a distinct, inverted U‐shaped light pattern on the ventral side of the abdomen with two additional white spots anterolateral to the spinnerets. This analysis recovered a monophyletic clade of all Asian Plebs, suggesting a single colonization event of the genus that putatively originated in Australia. Most Plebs species appear to be active during the day. They build a regular orb‐web with vertical stabilimentum in grass and low shrubs. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 279–341.  相似文献   

16.
The ability of a sufficient number of individuals to disperse is crucial for long‐term survival of populations. However, dispersal is often energetically costly, and thus is expected to trade‐off against other life‐history traits. In insect pest species, the occurrence of individuals with high flight activity challenges management practices. We performed artificial selection on flight activity and measured correlated responses to selection in the oriental fruit moth, Grapholita (= Cydia) molesta, a widely distributed and expanding lepidopteran pest of fruit crops. Both sexes rapidly responded to the imposed regime of divergent selection, indicating an adaptive potential of flight activity in this species. Upward‐selected moths died sooner than downward‐selected ones, providing evidence for a cost of flight activity to adult survival, reputedly associated with enhanced metabolic rates. Oppositely‐selected females had similar total reproductive output, disproving a trade‐off between dispersal and reproduction, although females with higher flight activity laid their eggs sooner. The ratio of body weight to forewing surface (forewing loading) did not significantly differ between selected lines. The present study contributes to the understanding of dispersal evolution, and also provides new insights into life‐history theory as well as important baseline data for the improvement of pest management practices. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 879–889.  相似文献   

17.
We outline the potentially important role of dispersal in linking diversity patterns at different spatial and temporal scales, and the resulting potential to link hypotheses explaining macroscale patterns of diversity. We do this by proposing a possible mechanism linking climate to diversity patterns: we argue that climate, via effects of continuity of habitat availability in space and time, mediates a dispersal–ecological specialization trade‐off at the metacommunity level that leads to latitudinal trends in dispersal ability, ecological specialization, range sizes, speciation and species richness, ultimately driving the latitudinal diversity gradient. This trade‐off constitutes a possible mechanism for the strong macroscale correlation between climate and species richness that is consistent with recent ideas about niche conservatism and gradient lengths, as well as other leading hypotheses. We present an overview of predictions derived from our ideas. Of these, some have already been tested and supported and others are still open to debate or need testing. Together they provide a unique set of predictions that allows falsification.  相似文献   

18.
Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food‐web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food‐web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.  相似文献   

19.
Understanding how populations and communities respond to competition is a central concern of ecology. A seminal theoretical solution first formalised by Levins (and re‐derived in multiple fields) showed that, in theory, the form of a trade‐off should determine the outcome of competition. While this has become a central postulate in ecology it has evaded experimental verification, not least because of substantial technical obstacles. We here solve the experimental problems by employing synthetic ecology. We engineer strains of Escherichia coli with fixed resource allocations enabling accurate measurement of trade‐off shapes between bacterial survival and multiplication in multiple environments. A mathematical chemostat model predicts different, and experimentally verified, trajectories of gene frequency changes as a function of condition‐specific trade‐offs. The results support Levins' postulate and demonstrates that otherwise paradoxical alternative outcomes witnessed in subtly different conditions are predictable.  相似文献   

20.
Aboveground tree architecture is neither fully deterministic nor random. It is likely the result of mechanisms that balance static requirements and light‐capturing efficiency. Here, we used terrestrial laser scanning data to investigate the relationship between tree architecture, here addressed using the box‐dimension (Db), and the architectural benefit‐to‐cost ratio, the light availability, and the growth of trees. We detected a clear relationship between Db and the benefit‐to‐cost ratio for the tested three temperate forest tree species (Fagus sylvatica L., Fraxinus excelsior L., and Acer pseudoplatanus L.). In addition, we could also show that Db is positively related to the growth performance of several tropical tree species. Finally, we observed a negative relationship between the strength of competition enforced on red oak (Quercus rubra L.) trees and their Db. We therefore argue that Db is a meaningful and integrative measure that describes the structural complexity of the aboveground compartments of a plant as well as its relation to structural efficiency (benefit‐to‐cost ratio), productivity, and growing conditions (competition or availability of light).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号