首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Aim Bergmann's rule, the tendency for body size to be positively correlated with latitude, is widely accepted but the mechanisms behind the patterns are still debated. Bergmann's originally conceived mechanism was based on heat conservation; other proposed mechanisms invoke phylogeny, migration distance and resource seasonality. With the goal of examining these mechanisms, we quantified morphological variation across the breeding range of a Neotropical migratory songbird, the cerulean warbler (Dendroica cerulea). Location Deciduous forests of eastern North America. Methods We sampled nine cerulean warbler populations, spanning the species’ breeding range. We captured 156 males using targeted playback and model presentation, and included 127 adult males in our analyses of morphological variation. We used an information‐theoretical approach to identify climatic variables associated with geographical variation in body size. Results Cerulean warbler body size adheres to Bergmann's rule: individuals in northern populations are larger than those in southern populations. Variation in body size is best explained by variation in dry and wet‐bulb temperature and actual evapotranspiration. Main conclusions Adherence to Bergmann's rule by the cerulean warbler appears to be linked to thermodynamics (heat conservation in the north, evaporative cooling in the south) and resource seasonality. Multiple selection pressures can interact to generate a single axis of morphological geographical variation, and even subtle fluctuations in climatic variables can exert significant selection pressures. We suggest that the influence of selection pressures on migrants might be enhanced by migratory connectivity, providing further support for the important role played by this phenomenon in the ecology, evolution and population dynamics of migratory songbirds.  相似文献   

2.
Bergmann's rule states that endotherms have a large body size in high latitudes and cold climates. However, previous empirical studies have reported mixed evidence on the relationships between body size and latitude, raising the question of why some clades of endotherms follow Bergmann's rule, whereas others do not. Here, we synthesized the interspecific relationships between body size and latitude among 16,187 endothermic species (5422 mammals and 10,765 birds) using Bayesian phylogenetic generalized linear mixed models to examine the strength and magnitude of Bergmann's rule. We further assessed the effect of biological and ecological factors (i.e., body mass categories, dietary guild, winter activity, habitat openness, and climate zone) on the variations in the body mass–latitude relationships by adding an interaction term in the models. Our results revealed a generally weak but significant adherence to Bergmann's rule among all endotherms at the global scale. Despite taxonomic variation in the strength of Bergmann's rule, the body mass of species within most animal orders showed an increasing trend toward high latitudes. Generally, large-bodied, temperate species, non-hibernating mammals, and migratory and open-habitat birds tend to conform to Bergmann's rule more than their relatives do. Our results suggest that whether Bergmann's rule applies to a particular taxon is mediated by not only geographic and biological features, but also potential alternate strategies that species might have for thermoregulation. Future studies could explore the potential of integrating comprehensive trait data into phylogenetic comparative analysis to re-assess the classic ecogeographic rules on a global scale.  相似文献   

3.
In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate‐driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site‐specific phenology. Thus, adaptations for efficient long‐distance flights might be also related to conditions at destination areas. For an obligatory long‐distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green‐up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green‐up and thus short optimal arrival periods. We suggest that the speed of spring green‐up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.  相似文献   

4.
1. Bergmann's rule sensu lato, the ecogeographic pattern relating animals' body size with environmental temperature (or latitude), has been shown to be inconsistent among insect taxa. Body size clines remain largely unexplored in aquatic insects, which may show contrasting patterns to those found in terrestrial groups because of the physiological or mechanical constraints of the aquatic environment. 2. Bergmann's rule was tested using data on body size, phylogeny and distribution for 93 species belonging to four lineages of dytiscid water beetles. The relationship between size and latitude was explored at two taxonomic resolutions – within each independent lineage, and for the whole dataset – employing phylogenetic generalised least‐squares to control for phylogenetic inertia. The potential influence of habitat preference (lotic versus lentic) on body size clines was also considered. 3. Within‐lineage analyses showed negative relationships (i.e. converse Bergmann's rule), but only in two lineages (specifically in those that included both lotic and lentic species). By contrast, no relationship was found between body size and latitude for the whole dataset. 4. These results suggest that there may be no universal interspecific trends in latitudinal variation of body size in aquatic insects, even among closely related groups, and show the need to account for phylogenetic inertia. Furthermore, habitat preferences should be considered when exploring latitudinal clines in body size in aquatic taxa at the interspecific level.  相似文献   

5.
Aim The aim of this study is to test whether Bergmann's rule, a general intraspecific tendency towards larger body size in cooler areas and at higher latitudes, holds for birds throughout the world. Location This study includes information on species of birds from throughout the world. Methods I gathered data on body size variation from the literature and used two general meta‐analytical procedures to test the validity of Bergmann's rule in birds: a modified vote‐counting approach and calculation of overall effect sizes. Related species may show similar body size trends, thus I performed all analyses using nonphylogenetic and phylogenetic methods. I used tests of phylogenetic signal for each data set to decide which type of statistical analysis (nonphylogenetic or phylogenetic) was more appropriate. Results The majority of species of birds (76 of 100 species) are larger at higher latitudes, and in cooler areas (20 of 22 species). Birds show a grand mean correlation coefficient of +0.32 for body size and latitude, and ?0.81 for body size and temperature, both significant trends. Sedentary species show stronger body size trends in some, but not all, analyses. Neither males nor females consistently have stronger body size trends. Additionally, the strength of body size trends does not vary with latitude or body mass. Conclusions Bergmann's rule holds for birds throughout the world, regardless of whether temperature or latitude (as a proxy) is used. Previous studies have suggested that Bergmann's rule is stronger for sedentary than migratory species, males than females and temperate than tropical taxa. I did not find strong support for any of these as general themes for birds, although few studies of tropical taxa have been conducted. The processes responsible for Bergmann's rule remain somewhat of a black box; however, fasting endurance is probably a more important factor than the traditional hypothesis of heat conservation.  相似文献   

6.
Consistent responses by various organisms to common environmental pressures represent strong evidence of natural selection driving geographical variation. According to Bergmann's and Allen's rules, animals from colder habitats are larger and have smaller limbs than those from warmer habitats to minimize heat loss. Although evidence supporting both rules in different organisms exists, most studies have considered only elevational or latitudinal temperature gradients. We tested for the effects of temperature associated with both elevation and latitude on body and appendage size of torrent ducks (Merganetta armata), a widespread species in Andean rivers. We found a negative relationship between body size and temperature across latitude consistent with Bergmann's rule, whereas there was a positive relationship between these variables along replicate elevational gradients at different latitudes. Limb‐size variation did not support Allen's rule along latitude, nor along elevation. High‐elevation ducks were smaller and had longer wings than those inhabiting lower elevations within a river. We hypothesize that temperature is likely a major selective pressure acting on morphology across latitudes, although hypoxia or air density may be more important along elevational gradients. We conclude that the effect of temperature on morphology, and hence the likelihood of documenting ecogeographical ‘rules’, depends on the environmental context in which temperature variation is examined. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 850–862.  相似文献   

7.
树麻雀(Passer montanus)分布范围广、海拔梯度大,也是人类活动的伴随物种。对中国837个样本的10个形态特征与温度、日照、海拔和风速等4个主要环境因子进行相关分析,结果显示:树麻雀的体重、嘴裂、翅长、尾长、跗跖长、脑骨宽、眼间距与日照因子显著相关(P0.05),体重、体长、翅长、尾长、跗跖长与海拔因子显著相关(P0.05),体重、嘴峰、翅长、脑骨长与温度因子显著相关(P0.05),表明树麻雀的形态指标易随环境因子的变化而变化。通过控制经度和海拔两个变量,对形态指标与纬度的偏相关分析表明,体重、翅长、脑骨长和脑骨宽与纬度呈显著正相关(P0.05),体表突出部分嘴峰、嘴裂与纬度呈显著负相关(P0.05),即随着纬度的升高,树麻雀身体逐渐变大,符合贝格曼规律;体表突出部分嘴峰和嘴裂随纬度升高变短,符合阿伦规律。飞行能力与海拔因子呈极显著正相关(n=92,r=0.217,P=0.038),表明树麻雀在高海拔地区具有更强的飞行能力,这也许是它成为广布种的重要原因。  相似文献   

8.
Large amounts of genetic variation for wing length and wing area were demonstrated both within and between Drosophila melanogaster populations along a latitudinal gradient in South America. Wing length and wing area showed a strong positive correlation with latitude in both wild flies and laboratory-raised descendants. Large population differences were observed for heritability and coefficient of variation of these two traits, whereas relatively small population differences were found for development time, viability, pupal mortality, sex ratio and their norms of reaction to four developmental temperatures. No clear-cut latitudinal clines were established for these life-history characters. These results are discussed in the light of Bergmann's Rule and the relation between larval development and adult body size.  相似文献   

9.
Geographic variation in body size and sexual dimorphism of the short‐nosed fruit bat (Cynopterus sphinx) was investigated in peninsular India. Bats were sampled at 12 localities along a 1200 km latitudinal transect that paralleled the eastern flanks of the Western Ghats. The geographic pattern of variation in external morphology of C. sphinx conforms to the predictions of Bergmann's Rule, as indicated by a steep, monotonic cline of increasing body size from south to north. This study represents one of the first conclusively documented examples of Bergmann's Rule in a tropical mammal and confirms that latitudinal clines in body size are not exclusively restricted to temperate zone homeotherms. Body size was indexed by a multivariate axis derived from principal components analysis of linear measurements that summarize body and wing dimensions. Additionally, length of forearm was used as a univariate index of structural size to examine geographic variation in a more inclusive sample of bats across the latitudinal transect. Multivariate and univariate size metrics were strongly and positively correlated with body mass, and exhibited highly concordant patterns of clinal variation. Stepwise multiple regression on climatological variables revealed that increasing size of male and female C. sphinx was associated with decreasing minimum temperature, increasing relative humidity, and increasing seasonality. Although patterns of geographic size variation were highly concordant between the sexes, C. sphinx also exhibited a latitudinal cline in the magnitude and direction of sexual size dimorphism. The size differential reversed direction across the latitudinal gradient, as males averaged larger in the north, and females averaged larger in the south. The degree of female‐biased size dimorphism across the transect was negatively correlated with body size of both sexes. Canonical discriminant analysis revealed that male‐ and female‐biased size dimorphism were based on contrasting sets of external characters. Available data on geographic variation in the degree of polygyny in C. sphinx suggests that sexual selection on male size may play a role in determining the geographic pattern of sexual size dimorphism.  相似文献   

10.
Urbanization implies a dramatic impact on ecosystems, which may lead to drastic phenotypic differences between urban and nonurban individuals. For instance, urbanization is associated with increased metabolic costs, which may constrain body size, but urbanization also leads to habitat fragmentation, which may favor increases in body mass when for instance it correlates with dispersal capacity. However, this apparent contradiction has rarely been studied. This is particularly evident in China where the urbanization process is currently occurring at an unprecedented scale. Moreover, no study has addressed this issue across large geographical areas encompassing locations in different climates. In this regard, Barn Swallows (Hirundo rustica) are a suitable model to study the impact of urbanization on wild animals because they are a widely distributed species tightly associated with humans. Here, we collected body mass and wing length data for 359 breeding individuals of Barn Swallow (H. r. gutturalis) from 128 sites showing different levels of urbanization around the whole China. Using a set of linear mixed‐effects models, we assessed how urbanization and geography influenced body size measured using body mass, wing length, and their regression residuals. Interestingly, we found that the impact of urbanization was sex‐dependent, negatively affecting males’ body mass, its regression residuals, and females’ wing length. We also found that northern and western individuals were larger, regarding both body mass and wing length, than southern and eastern individuals. Females were heavier than males, yet males had slightly longer wings than females. Overall, our results showed that body mass of males was particularly sensitive trait to urbanization, latitude, and longitude, while it only showed a weak response to latitude in females. Conversely, while wing length showed a similar geographical pattern, it was only affected by urbanization in the case of females. Further research is needed to determine whether these phenotypic differences are associated with negative effects of urbanization or potential selective advantages.  相似文献   

11.
Bergman and converse Bergman rules, amongst others, describe latitudinal variation in size of organisms, including flying ectotherms like butterflies. However, geographic clines in morphological traits of functional significance for flight performance and thermoregulation may also exist, although they have received less attention within a biogeographical context. Variation in flight‐related morphology has often been studied relative to landscape structure. However, the extent to which landscape effects interact with latitudinal clines of phenotypic variation has rarely been tested. Here we address the effect of latitude, landscape type and the interaction effect on body size and flight‐related morphology in the speckled wood butterfly Pararge aegeria. Male adult butterflies were collected from two replicate populations in each agricultural and woodland landscape types along a 700 km cline in six latitudinal zones. Overall size, adult body mass and wing area increased with latitude in line with Bergmann's rule. Forewing length, however, decreased with latitude. As predicted from thermoregulatory needs in ectotherms, the basal wing part was darker to the north. Latitudinal trends for flight‐related morphological traits were opposite to predictions about flight endurance under cooler conditions that were observed in some non‐lepidopteran insects, i.e. wing loading increased and wing aspect ratio decreased with latitude. Opposite trends can, however, be explained by other aspects of butterfly flight performance (i.e. mate‐location behaviour). As predicted from differences in environmental buffering in woodland landscapes along the latitudinal gradient, significant landscape×latitude interaction effects indicated stronger latitudinal clines and stronger phenotypic variation for size and flight morphology in the agricultural landscape compared to the woodland landscape. In agreement with significant interaction effects, morphological differentiation increased with latitude and was higher between population pairs of agricultural landscape than between population pairs of woodland landscape. These results demonstrate that landscape, latitude and their interaction contribute to the understanding of the complex geographic variation in P. aegeria adult phenotypes across Europe.  相似文献   

12.
Body size is implicated in individual fitness and population dynamics. Mounting interest is being given to the effects of environmental change on body size, but the underlying mechanisms are poorly understood. We tested whether body size and body condition are related to ambient temperature (heat maintenance hypothesis), or/and explained by variations in primary production (food availability hypothesis) during the period of body growth in songbirds. We also explored whether annual population‐level variations of mean body size are due to changes of juvenile growth and/or size‐dependent mortality during the first year. For 41 species, from 257 sites across France, we tested for relationships between wing length (n = 107 193) or body condition (n = 82 022) and local anomalies in temperature, precipitation and net primary production (NDVI) during the breeding period, for juveniles and adults separately. Juvenile body size was best explained by primary production: wings were longer in years with locally high NDVI, but not shorter in years with low NDVI. Temperature showed a slightly positive effect. Body condition and adult wing length did not covary with any of the other tested variables. We found no evidence of climate‐driven size‐dependent mortality for the breeding season. In our temperate system, local climatic anomalies explained little of the body size variation. A large part of wing length variance was site‐specific, suggesting that avian size was more dependent on local drivers than global ones. Net primary production influenced juvenile size the most through effects on body growth. We suggest that, during the breeding season in temperate systems, thermoregulatory mechanisms are less involved in juvenile growth than food assimilation.  相似文献   

13.
Organisms tend to exhibit phenotypes that can be shaped by climate, commonly demonstrating clinal variations along latitudinal gradients. In vertebrates, air temperature plays a major role in shaping body size in both ectothermic and endothermic animals. However, additional small‐scale environmental factors can also act as selection pressures in the marine ecosystem (e.g. primary productivity), evidencing multi‐scale processes acting on marine organisms. In this study, we tested Bergmann's rule in a widely distributed seabird, the brown booby Sula leucogaster, in addition to evaluating the relationship of sea surface temperature and chlorophyll α with phenotypes. We used traits from a morphometric dataset (culmen, wing chord, and tarsus length) and body mass of 276 brown boobies distributed on six breeding sites along a latitudinal gradient in the South Atlantic Ocean (0–27°S). We found significant differentiation among colonies, but phenotypic similarities were observed between colonies located at the extremes of the latitudinal gradient. As the colony nearest to the Equator, Saint Peter and Saint Paul archipelago, had the largest and heaviest individuals, the model containing only air temperature explained < 5% of the allometric variation, providing no substantial support for Bergmann's rule. However, when we added the interaction of chlorophyll α and sea surface temperature the deviance explained rose to over 80%. Primary productivity and sea surface temperature do not follow a latitudinal gradient in the ocean and, therefore, the role of small‐scale oceanographic processes in shaping body size and the importance of considering additional environmental variables when testing Bergmann's rule in marine organisms are evident.  相似文献   

14.
Reduction in body size of organisms following mass extinctions is well‐known and often ascribed to the Lilliput effect. This phenomenon is expressed as a temporary body size reduction within surviving species. Despite its wide usage the term is often loosely applied to any small post‐extinction taxa. Here we assess the size of bivalves of the family Limidae (Rafineque) prior to, and in the aftermath of, the end‐Triassic mass extinction event. Of the species studied only one occurs prior to the extinction event, though is too scarce to test for the Lilliput effect. Instead, newly evolved species originate at small body sizes and undergo a within‐species size increase, most dramatically demonstrated by Plagiostoma giganteum (Sowerby) which, over two million years, increases in size by 179%. This trend is seen in both field and museum collections. We term this within‐species size increase of newly originated species in the aftermath of mass extinction, the Brobdingnag effect, after the giants that were contemporary with the Lilliputians in Swift's Gulliver's Travels. The size increase results from greater longevity and faster growth rates. The cause of the effect is unclear, although it probably relates to improved environmental conditions. Oxygen‐poor conditions in the Early Jurassic are associated with populations of smaller body size caused by elevated juvenile mortality but these are local/regional effects that do not alter the long‐term, size increase. Although temperature‐size relationships exist for many organisms (Temperature‐Size Rule and Bergmann's Rule), the importance of this is unclear here because of a poorly known Early Jurassic temperature record.  相似文献   

15.
Bergmann's Rule predicts larger body sizes in colder habitats, increasing organisms' ability to conserve heat. Originally formulated for endotherms, it is controversial whether Bergmann's Rule may be applicable to ectotherms, given that larger ectotherms show diminished capacity for heating up. We predict that Bergmann's Rule will be applicable to ectotherms when the benefits of a higher conservation of heat due to a larger body size overcompensate for decreased capacity to heating up. We test this hypothesis in the lizard Psammodromus algirus, which shows increased body size with elevation in Sierra Nevada (SE Spain). We measured heating and cooling rates of lizards from different elevations (from 300 to 2500 m above sea level) under controlled conditions. We found no significant differences in the heating rate along an elevational gradient. However, the cooling rate diminished with elevation and body size: highland lizards, with larger masses, have a higher thermal inertia for cooling, which allows them to maintain heat for more time and keep a high body temperature despite the lower thermal availability. Consequently, the net gaining of heat increased with elevation and body size. This study highlights that the heat conservation mechanism for explaining Bergmann's Rule works and is applicable to ectotherms, depending on the thermal benefits and costs associated with larger body sizes.  相似文献   

16.
17.
Patterns of latitudinal variation in the phenotype or genotype of an organism may provide evidence for natural selection. In this study, we investigated seven populations of swallowtail Sericinus montelus Gray, 1798 (Lepidoptera: Papilionidae), a non‐migratory species, to explore the latitudinal variation of morphological characteristics in adults. The results showed that body size and the development of dark pigmentation on wings in this species responded strongly to latitude. The body size of both male and female adult of S. montelus was negatively correlated with latitude. These findings provided solid evidence to support the converse Bergmann's rule. We considered that the observed variation in morphological characteristics was most likely mediated by the seasonal length and thermoperiod to adapt to different latitudinal environment (e.g. shortened developmental time of immature stages for smaller body size at higher latitude). Moreover, the tendency towards progressively darker colour patterns (only in adult males) at increasingly low latitudes was consistent with Gloger's rule. We suggested that the observed colour variation was most likely associated with thermoregulation. Slight variation in the morphology of the W‐shaped stripe on the forewing of adult females was also found, and we presumed that the functions of sexual preferences, mimicry and thermoregulation might be involved.  相似文献   

18.
Ecogeographical rules attempt to explain large‐scale spatial patterns in biological traits. One of the most enduring examples is Bergmann''s rule, which states that species should be larger in colder climates due to the thermoregulatory advantages of larger body size. Support for Bergmann''s rule, however, is not consistent across taxonomic groups, raising questions about what factors may moderate its effect. Behavior may play a crucial, yet so far underexplored, role in mediating the extent to which species are subject to environmental selection pressures in colder climates. Here, we tested the hypothesis that nest design and migration influence conformity to Bergmann''s rule in a phylogenetic comparative analysis of the birds of the Western Palearctic, a group encompassing dramatic variation in both climate and body mass. We predicted that migratory species and those with more protected nest designs would conform less to the rule than sedentary species and those with more exposed nests. We find that sedentary, but not short‐ or long‐distance migrating, species are larger in colder climates. Among sedentary species, conformity to Bergmann''s rule depends, further, on nest design: Species with open nests, in which parents and offspring are most exposed to adverse climatic conditions during breeding, conform most strongly to the rule. Our findings suggest that enclosed nests and migration enable small birds to breed in colder environments than their body size would otherwise allow. Therefore, we conclude that behavior can substantially modify species’ responses to environmental selection pressures.  相似文献   

19.
Latitudinal shifts in body size of Enallagma cyathigerum (Odonata)   总被引:1,自引:0,他引:1  
Aim Survey of the latitudinal body size pattern for populations of Enallagma cyathigerum (Odonata) across a south‐north transect. Location A transect covering the whole distribution range from south to north across Europe was sampled. Methods Newly emerged adults were collected from five major sites across Europe and one to four localities were sampled within each site. In total 253 adults were collected from fourteen localities. Body size was measured using thorax length, length of right front wing and length of right hind tibia. These body size estimates were thereafter related to latitude and mean temperature in January and July. Results Body size showed a U‐shaped pattern with latitude, being large at low and high latitudes and small at intermediate latitudes. The same U‐shaped pattern was found for mean January and July temperature, with large animals at low and high temperatures. Conclusion The U‐shaped relationship between body size and latitude is suggested to be a combination of two effects: (1) the length of the season favourable for growth and development, and (2) variation in life cycle length with latitude.  相似文献   

20.
1. Ecogeographical rules refer to recurring patterns in nature, including the latitudinal diversity gradient (LDG), Rapoport's rule and Bergmann's rule, amongst others. In the present study, the existence of these rules was examined for diving beetles (Coleoptera: Dytiscidae), a family of aquatic predatory beetles. 2. Assemblage‐level data were analysed for diving beetles, focusing on species richness, local contribution to beta diversity (LCBD), mean range size and mean body size across the biogeographical provinces of Northern Europe. First, each of these variables was correlated with latitude, and then variation in each variable was modelled using actual environmental variables in boosted regression tree analysis. 3. Species richness was found to decrease with latitude, LCBD increased with latitude, mean range size did not show a significant relationship with latitude, and mean body size decreased with latitude. The latter finding was in contrast to Bergmann's rule. The actual environmental variables best predicting variation in these four response variables varied among the models, although they generally included temperature‐related and land use variables as the most influential ones. 4. The results obtained in the present study suggest that diving beetles conformed to the LDG, did not follow Rapoport's rule, and showed a reversed latitudinal gradient in the context of Bergmann's rule. In addition, species‐poor provinces harboured ecologically most unique faunas, suggesting that species richness and LCBD are complementary measures of biodiversity. 5. Even though general support was not found for most of the ecogeographical rules examined, the findings of the present study are interesting because they suggest that aquatic ectothermic invertebrates may show patterns different from those originally described for terrestrial endothermic vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号