首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brown trout Salmo trutta redds in the Credit River, Ontario, were enumerated and assessed for physical, location and cover feature characteristics during the 2002 spawning season. Hydraulic habitats were classified on the basis of channel morphology and availability recorded. Combined use and availability data were used to assess habitat selection preferences and test for significant differences. Significant preferences for upstream pool and riffle habitat were found, but all available habitat types were used to some degree. Non‐preferred habitat redds were significantly larger than those located in preferred habitats and more likely to be found in association with woody debris cover. Larger redds were interpreted as indicative of larger fish. The use of non‐preferred downstream habitats by larger fish was further interpreted in the context of overwinter habitat requirements to reflect possible trade‐offs between reproductive and adult over‐winter survival requirements resulting in the selection of habitat for multiple life‐history functions. Results suggest that redd density alone should not be used to infer critical autumn habitat requirements for brown trout.  相似文献   

2.
NIALL H. K. BURTON 《Ibis》2009,151(2):361-372
Aspects of the reproductive success of Tree Pipits Anthus trivialis were examined in relation to broad‐scale habitat and nest‐site selection in Thetford Forest, a coniferous plantation forest in eastern England. Three habitat classes were defined corresponding to previously reported densities of Tree Pipits: clearfell and recently planted stands (habitat class A: low density), stands 2–5 years old (B: high density) and stands 6 years or older (C: low density). The preference for 2–5‐year‐old stands indicated by higher densities was supported by the timing of territory settlement. Tree Pipits also showed distinct preferences for nest‐site characteristics that were relatively consistent across habitat classes and throughout the breeding season. At the ‘habitat scale’, results were consistent with the predictions of the ideal despotic distribution model. First clutches were laid significantly earlier in the preferred habitat class B. Overall nesting success (i.e. the proportion of nests producing fledglings), but not clutch size, also varied between habitats, being greater in habitat classes B and C than in habitat class A. The variation in overall nesting success between habitats was primarily driven by low nest survival rates during the laying/incubation period in clearfell and recently planted stands. Nest survival rates during the nestling period were lower in the preferred 2–5‐year‐old (and older) stands and declined over the course of the study. Preferences for nest‐site characteristics (at least for those that were measured) provided no apparent benefit to nest survival rates. Overall nesting success thus appeared to be determined at the habitat scale, perhaps because the broad differences in cover between habitats affected the likelihood of nest predation (the main cause of nest failure). It is suggested that the very low nesting success experienced by Tree Pipits in clearfell and new stands may be one factor in the species’ relative avoidance of this habitat and preference for 2–5‐year‐old stands.  相似文献   

3.
Aim At a regional scale, across southern Africa, woody thickening of savannas is becoming increasingly widespread. Using coupled vegetation and faunal responses (ants), we explore whether major changes in woody cover in savannas represent an increase in the density of savanna trees (C4 grass layer remains intact) or a ‘regime shift’ in system state from savanna to thicket (=dry forest) where broad‐leaved, forest‐associated trees shade out C4 grasses. Location Hluhluwe Game Reserve, South Africa. Methods We sampled paired open (low woody cover) and closed (high cover that have undergone an increase in tree density) sites. Vegetation was sampled using belt transects, and a combination of pitfall trapping and Winkler sampling was used for ants. Results Closed habitats did not simply contain a higher density of woody savanna species, but differed significantly in structure, functional composition (high prevalence of broad‐leaved trees, discontinuous C4 grasses) and system properties (e.g. low flammability). Ant assemblage composition reflected this difference in habitat. The trophic structure of ant assemblages in the two habitats revealed a functional shift with much higher abundances of predatory species in the closed habitat. Main conclusions The predominance of species with forest‐associated traits and concomitant reduction of C4 grasses in closed sites indicate that vegetation has undergone a shift in fundamental system state (to thicket), rather than simply savanna thickening. This biome shift has cascading functional consequences and implications for biodiversity conservation. The potential loss of many specialist savanna plant species is especially concerning, given the spatial extent and speed of this vegetation switch. Although it is not clear how easily the habitat switch can be reversed and how stable the thicket habitats are, it is likely in the not‐too‐distant future that conservation managers will be forced to make decisions on whether to actively maintain savannas.  相似文献   

4.
The black‐tailed dusky antechinus (Antechinus arktos) is a recently discovered, endangered, carnivorous marsupial mammal endemic to the Tweed Shield Volcano caldera, straddling the border between Queensland and New South Wales in eastern Australia. The species' preference for cool, high‐altitude habitats makes it particularly vulnerable to a shifting climate as these habitats recede. Aside from basic breeding and dietary patterns, the species' ecology is largely unknown. Understanding fine‐scale habitat attributes preferred by this endangered mammal is critical to employ successful conservation management. Here, we assess vegetation attributes of known habitats over three sites at Springbrook and Border Ranges National Parks, including detailed structure data and broad floristic assessment. Floristic compositional assessment of the high‐altitude cloud rainforest indicated broad similarities. However, only 22% of plant species were shared between all sites indicating a high level of local endemism. This suggests a diverse assemblage of vegetation across A. arktos habitats. Habitat characteristics were related to capture records of A. arktos to determine potential fine‐scale structural habitat requirements. Percentage of rock cover and leaf litter were the strongest predictors of A. arktos captures across survey sites, suggesting a need for foraging substrate and cover. Habitat characteristics described here will inform predictive species distribution models of this federally endangered species and are applicable to other mammal conservation programs.  相似文献   

5.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   

6.
Abstract: Although numerous studies have examined habitat use by raccoons (Procyon lotor), information regarding seasonal habitat selection related to resource availability in agricultural landscapes is lacking for this species. Additionally, few studies using radiotelemetry have investigated habitat selection at multiple spatial scales or core-use areas by raccoons. We examined seasonal habitat selection of 55 (31 M, 24 F) adult raccoons at 3 hierarchical orders defined by the movement behavior of this species (second-order home range, second-order core-use area, and third-order home range) in northern Indiana, USA, from May 2003 to June 2005. Using compositional analysis, we assessed whether habitat selection differed from random and ranked habitat types in order of selection during the crop growing period (season 1) and corn maturation period (season 2), which represented substantial shifts in resource availability to raccoons. Habitat rankings differed across hierarchical orders, between seasons within hierarchical orders, and between sexes within seasons; however, seasonal and intersexual patterns of habitat selection were not consistent across hierarchical orders of spatial scale. When nonrandom utilization was detected, both sexes consistently selected forest cover over other available habitats. Seasonal differences in habitat selection were most evident at the core-area scale, where raccoon selection of agricultural lands was highest during the maturation season when corn was available as a direct food source. Habitat use did not differ from availability for either sex in either season at the third-order scale. The selection of forest cover across both seasons and all spatial orders suggested that raccoon distribution and abundance in fragmented landscapes is likely dependent on the availability and distribution of forest cover, or habitats associated with forest (i.e., water), within the landscape. The lack of consistency in habitat selection across hierarchical scales further exemplifies the need to examine multiple biological scales in habitat-selection studies.  相似文献   

7.
Animals are expected to select a breeding habitat using cues that should reflect, directly or not, the fitness outcome of the different habitat options. However, human‐induced environmental changes can alter the relationships between habitat characteristics and their fitness consequences, leading to maladaptive habitat choices. The most severe case of such nonideal habitat selection is the ecological trap, which occurs when individuals prefer to settle in poor‐quality habitats while better ones are available. Here, we studied the adaptiveness of nest box selection in a tree swallow (Tachycineta bicolor) population breeding over a 10‐year period in a network of 400 nest boxes distributed along a gradient of agricultural intensification in southern Québec, Canada. We first examined the effects of multiple environmental and social habitat characteristics on nest box preference to identify potential settlement cues. We then assessed the links between those cues and habitat quality as defined by the reproductive performance of individuals that settled early or late in nest boxes. We found that tree swallows preferred nesting in open habitats with high cover of perennial forage crops, high spring insect biomass, and high density of house sparrows (Passer domesticus), their main competitors for nest sites. They also preferred nesting where the density of breeders and their mean number of fledglings during the previous year were high. However, we detected mismatches between preference and habitat quality for several environmental variables. The density of competitors and conspecific social information showed severe mismatches, as their relationships to preference and breeding success went in opposite direction under certain circumstances. Spring food availability and agricultural landscape context, while related to preferences, were not related to breeding success. Overall, our study emphasizes the complexity of habitat selection behavior and provides evidence that multiple mechanisms may potentially lead to an ecological trap in farmlands.  相似文献   

8.
Scales and costs of habitat selection in heterogeneous landscapes   总被引:4,自引:0,他引:4  
Summary Two scales of habitat selection are likely to influence patterns of animal density in heterogeneous landscapes. At one scale, habitat selection is determined by the differential use of foraging locations within a home range. At a larger scale, habitat selection is determined by dispersal and the ability to relocate the home range. The limits of both scales must be known for accurate assessments of habitat selection and its role in effecting spatial patterns in abundance. Isodars, which specify the relationships between population density in two habitats such that the expected reproductive success of an individual is the same in both, allow us to distinguish the two scales of habitat selection because each scale has different costs. In a two-habitat environment, the cost of rejecting one of the habitats within a home range can be expressed as a devaluation of the other, because, for example, fine-grained foragers must travel through both. At the dispersal scale, the cost of accepting a new home range in a different habitat has the opposite effect of inflating the value of the original habitat to compensate for lost evolutionary potential associated with relocating the home range. These costs produce isodars at the foraging scale with a lower intercept and slope than those at the dispersal scale.Empirical data on deer mice occupying prairie and badland habitats in southern Alberta confirm the ability of isodar analysis to differentiate between foraging and dispersal scales. The data suggest a foraging range of approximately 60 m, and an effective dispersal distance near 140 m. The relatively short dispersal distance implies that recent theories may have over-emphasized the role of habitat selection on local population dynamics. But the exchange of individuals between habitats sharing irregular borders may be substantial. Dispersal distance may thus give a false impression of the inability of habitat selection to help regulate population density.  相似文献   

9.
Aim Woody plants affect vegetation–environment interactions by modifying microclimate, soil moisture dynamics and carbon cycling. In examining broad‐scale patterns in terrestrial vegetation dynamics, explicit consideration of variation in the amount of woody plant cover could provide additional explanatory power that might not be available when only considering landscape‐scale climate patterns or specific vegetation assemblages. Here we evaluate the interactive influence of woody plant cover on remotely sensed vegetation dynamics across a climatic gradient along a sky island. Location The Santa Rita Mountains, Arizona, USA. Methods Using a satellite‐measured normalized difference vegetation index (NDVI) from 2000 to 2008, we conducted time‐series and regression analyses to explain the variation in functional attributes of vegetation (productivity, seasonality and phenology) related to: (1) vegetation community, (2) elevation as a proxy for climate, and (3) woody plant cover, given the effects of the other environmental variables, as an additional ecological dimension that reflects potential vegetation–environment feedbacks at the local scale. Results NDVI metrics were well explained by interactions among elevation, vegetation community and woody plant cover. After accounting for elevation and vegetation community, woody plant cover explained up to 67% of variation in NDVI metrics and, notably, clarified elevation‐ and community‐specific patterns of vegetation dynamics across the gradient. Main conclusions In addition to the environmental factors usually considered – climate, reflecting resources and constraints, and vegetation community, reflecting species composition and relative dominance – woody plant cover, a broad‐scale proxy of many vegetation–environment interactions, represents an ecological dimension that provides additional process‐related understanding of landscape‐scale patterns of vegetation function.  相似文献   

10.
Selection of habitat components by ungulates associated with parturition sites varies among and within species depending upon vulnerability to predators, variation in local topography and climate regimes, and the length of time that the maternal–neonatal unit spends at or near the parturition location. We marked 169 parturition locations of elk (Cervus elaphus nelsoni) in western Wyoming using vaginal implant transmitters and evaluated parturition-specific habitat selection at macro- and microhabitat scales using a resource selection function modeling approach. Elk calved in a variety of habitats, yet demonstrated selection at both spatial scales. We found the strongest support for models that incorporated multiple habitat features and focused on topographical and vegetative cover types that provide physical and thermal cover at the macrohabitat scale and for visual cover models at the microhabitat scale. Models based solely on forage availability or quality were least supported at both scales, which may be indicative of a brief occupation of the parturition location or low heterogeneity in the availability of forage resources on parturition ranges. Results of early elk natural history studies may have represented a bias introduced by variable sightability and accessibility of females with calves and a lack of differentiation between calving and neonatal periods. More clearly defining calving site selection and removing biases toward more open habitats where sightability of neonates is greater may be used by wildlife or land managers to improve or protect calving habitats, which is often a stated objective of management actions. The results of this study suggest that microhabitat is more important to elk and that temporal closures over broad areas versus closures focused on specific macrohabitats may be more effective in protecting calving animals. © 2011 The Wildlife Society.  相似文献   

11.
Modification of habitat structure due to invasive plants can alter the risk landscape for wildlife by, for example, changing the quality or availability of refuge habitat. Whether perceived risk corresponds with actual fitness outcomes, however, remains an important open question. We simultaneously measured how habitat changes due to a common invasive grass (cheatgrass, Bromus tectorum) affected the perceived risk, habitat selection, and apparent survival of a small mammal, enabling us to assess how well perceived risk influenced important behaviors and reflected actual risk. We measured perceived risk by nocturnal rodents using a giving‐up density foraging experiment with paired shrub (safe) and open (risky) foraging trays in cheatgrass and native habitats. We also evaluated microhabitat selection across a cheatgrass gradient as an additional assay of perceived risk and behavioral responses for deer mice (Peromyscus maniculatus) at two spatial scales of habitat availability. Finally, we used mark‐recapture analysis to quantify deer mouse apparent survival across a cheatgrass gradient while accounting for detection probability and other habitat features. In the foraging experiment, shrubs were more important as protective cover in cheatgrass‐dominated habitats, suggesting that cheatgrass increased perceived predation risk. Additionally, deer mice avoided cheatgrass and selected shrubs, and marginally avoided native grass, at two spatial scales. Deer mouse apparent survival varied with a cheatgrass–shrub interaction, corresponding with our foraging experiment results, and providing a rare example of a native plant mediating the effects of an invasive plant on wildlife. By synthesizing the results of three individual lines of evidence (foraging behavior, habitat selection, and apparent survival), we provide a rare example of linkage between behavioral responses of animals indicative of perceived predation risk and actual fitness outcomes. Moreover, our results suggest that exotic grass invasions can influence wildlife populations by altering risk landscapes and survival.  相似文献   

12.
The ideal free distribution assumes that habitat selection is without cost and predicts that fitness should be equal in different habitats. If habitat selection has a cost, then individuals should only move to another habitat when potential fitness in the new habitat exceeds that in the source habitat by an amount greater than the cost of habitat selection. We used isodar techniques to assess the cost of habitat selection. In an experimental landscape, we monitored density, movement, and reproductive success of adult female prairie voles, Microtus ochrogaster, in adjacent paired habitats with low and high cover. We tested the following hypotheses: (1) adult female prairie voles exhibited density-dependent habitat selection; (2) the cost of habitat selection was density-independent. Habitat quality based on population density and fitness of adult females was higher in high cover habitats. Net movement was from low cover to high cover habitats. The results indicated that adult female prairie voles exhibited density-dependent habitat selection. Furthermore, there was a significant cost of habitat selection, and the cost was density-independent.  相似文献   

13.

In recent decades, the Eurasian beaver (Castor fiber) has once again become the keystone species in small river ecosystems in Russia. In many places, beaver activity has resulted in a significant change in lotic habitats, affecting the diversity, density, and biomass of aquatic organisms, including fish. While many studies have considered the ecosystem impacts of beavers, relatively few have focused on understanding the influence of beaver activity on steppe rivers. We conducted the first quantitative study of beaver impacts on fish assemblages in beaver-influenced and beaver-free sites on two small steppe rivers in the Don River basin in Russia. The presence of beavers altered the habitats in small steppe rivers and affected the diversity, density, and biomass of fish. A comparison of the number of species, density, and biomass of fish in six types of river habitats showed that these parameters were lower in beaver ponds than at riverine sites without beaver activity. Three fish species primarily preferred a single habitat type. Barbatula barbatula was found in riffles, Misgurnus fossilis in old beaver ponds, and Eudontomyzon mariae in abandoned beaver ponds. Beavers impacted fish distribution and density by changing dissolved oxygen, pH, and water current velocity. Overall, our results showed that the presence of beavers led to a temporary homogenization of fish habitats at a local scale in the valleys of small steppe rivers because beavers occupied these rivers only for a short period. However, habitat heterogeneity may increase if the beaver population stays stable or expands in the future.

  相似文献   

14.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

15.
2006年10-11月和2007年10-11月,在京杭运河邵伯-高邮段的西侧堤坝上,采用样方法测定了狗獾3个不同类型栖息地的特征变量和利用强度,结果表明:狗獾主要生活在郁闭度较高的森林中,对泡桐、泡桐-杨树次生林的利用强度显著的高于杨树人工林(P<0.05);多元线性逐步回归分析表明:洞口数主要受灌木密度、大树密度、草本植物盖度、土壤含水率和人为干扰强度的影响(P=0.002),而粪堆数主要受灌木密度、大树密度和人为干扰强度的影响(P=0.012)。整体来看,影响狗獾栖息地选择的因素主要是郁闭度、人为干扰水平有关的因子。  相似文献   

16.
In theory, habitat preferences should be adaptive. Accordingly, fitness is often assumed to be greater in preferred habitats; however, this assumption is rarely tested and, when it is, the results are often equivocal. Habitat preferences may not directly convey fitness advantages if animals are constrained by tradeoffs with other selective pressures like predation or food availability. We address unresolved questions about the survival consequences of habitat choices made during brood-rearing in a precocial species with exclusive maternal care (mallard Anas platyrhynchos, n = 582 radio-marked females on 27 sites over 8 years). We directly linked duckling survival with habitat selection patterns at two spatial scales using logistic regression and model selection techniques. At the landscape scale (55–80 km2), females that demonstrated stronger selection of areas with more cover type 4 wetlands and greater total cover type 3 wetland area (wetlands with large expanses of open water surrounded by either a narrow or wide peripheral band of vegetation, respectively) had lower duckling survival rates than did females that demonstrated weaker selection of these habitats. At finer scales (0.32–7.16 km2), females selected brood-rearing areas with a greater proportion of wetland habitat with no consequences for duckling survival. However, females that avoided woody perennial habitats composed of trees and shrubs fledged more ducklings. The relationship between habitat selection and survival depended on both spatial scale and habitats considered. Females did not consistently select brood-rearing habitats that conferred the greatest benefits, an unexpected finding, although one that has also been reported in other recent studies of breeding birds.  相似文献   

17.
The differences among blennioid assemblages (families Blenniidae and Tripterygiidae) on different habitats were assessed at two localities of the Ligurian Sea, namely Arenzano and Riva Trigoso. The assemblage composition and species relative density were evaluated visually on four different habitats of diverse wave exposure and substratum orientation (macro‐habitat characteristics): two vertical intertidal and subtidal habitats (exposed and sheltered rockwalls) and two horizontal subtidal habitats (semi‐exposed flat rock and boulders and pebbles). Each habitat was also characterized in relation to micro‐habitat features, such as substratum complexity, heterogeneity and amount of algae cover. Patterns of differences among habitats in assemblage variables and fish density, and the influences of macro‐ and micro‐habitat features on these patterns were studied at small (within localities) and large (across localities) spatial scales. Higher values of species richness (S), diversity and evenness (J) were generally associated with vertical habitats, as a result of a positive correlation with substratum orientation. The presence of an intertidal zone in the rockwall habitats may partially explain the observed differences in assemblage variables between vertical and horizontal habitats. The strength of relationships between S, and J and the other investigated habitat variables (exposure, complexity, heterogeneity and algae cover) varied greatly depending on spatial scale. All these relationships were positive, except for complexity. Significant variation in the assemblage total density among habitats was recorded only at Arenzano, where a larger number of fishes were counted on rockwalls rather than on the horizontal habitats. The positive effect of orientation on fish total density was strictly dependent on spatial scale. Fish total density showed a negative correlation with complexity and a positive correlation with heterogeneity, both relationships being unaffected by spatial scale. The unexpected relationship with complexity was probably due to the fact that, in the most complex habitat (i.e. boulder and pebbles), the potential positive effect of high complexity on fish density might be overcome by the negative influence of other environmental features, such as horizontal orientation and low wave exposure. Complexity and heterogeneity thus seemed good predictors of fish total density, but their role needs to be carefully interpreted. The most marked differences in species composition and relative density were found between rockwalls and the other habitats, mostly due to an unbalanced distribution of some stenoecious species. Variations in species relative density were related to different combinations of both macro‐ and micro‐habitat features, and these relationships usually changed depending on spatial scale.  相似文献   

18.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Beaver (Caster canadensis) foraging and edaphic conditions can modify the vegetational characteristics of woody plant community in lowland boreal forests. Effective management of these areas requires an understanding of the relative contribution of these factors in shaping the woody plant community structure. Our objective was to quantify the effects of herbivory by beavers and edaphic conditions on woody plant community organization of lowland boreal forests surrounding beaver ponds. Woody vegetation and soils were sampled at 15 ponds occupied by beavers and one other pond abandoned by them in southern Algonquin Park, Ontario. We measured spatial variation in plant diversity, foraging rates and sapling recruitment of trees and shrubs along gradients of beaver foraging intensity and soil moisture, P, K, Mg, and pH. Beavers fed preferentially on a small number of deciduous species and the number of cut stems declined sharply with increasing distance from ponds. Conifers increased in relative dominance to deciduous species in the presence of beavers. Plant species richness and stem and basal area diversity peaked at intermediate distances (about 25 m) from ponds. Sapling recruitment by non-preferred species was positively related to foraging intensity. Total stem abundance and basal area and sapling recruitment by four preferred species (Populus tremuloides, Acer rubrum, Acer saccharum and Corylus cornuta) were negatively related to foraging intensity. However, by including Alnus rugosa and Salix bebbiana (also preferred by beavers) these patterns changed, becoming positively related to foraging intensity. There was also a pronounced gradient in soil moisture, which also decreased with distance from ponds. The other measured edaphic variables did not vary consistently with distance from ponds. Sapling recruitment in mesic versus xeric species varied consistently with hydrid conditions along the moisture gradient, such that variation in moisture also could produce the observed pattern of plant diversity. Diversity patterns changed three years after beaver abandonment of a pond, though sapling recruitment patterns in preferred and non-preferred species around the abandoned pond were similar to the occupied ponds. These observations suggest spatial variation in woody plant richness and diversity could be determined by combined effects of both herbivory (disturbance by beavers) and variable responses of different species to edaphic conditions.  相似文献   

20.
Recognition that beavers are integral components of stream ecosystems has resulted in an increase in beaver‐mediated habitat restoration projects. Beaver restoration projects are frequently implemented in degraded stream systems with little or no beaver activity. However, selection of restoration sites is often based on habitat suitability research comparing well‐established beaver colonies to unoccupied stream sections or abandoned colonies. Because beavers dramatically alter areas they occupy, assessing habitat conditions at active colonies may over‐emphasize habitat characteristics that are modified by beaver activity. During 2015–2017, we conducted beaver activity surveys on streams in the upper Missouri River watershed in southwest Montana, United States, to investigate habitat selection by beavers starting new colonies in novel areas. We compared new colony locations in unmodified stream segments to unsettled segments to evaluate conditions that promoted colonization. Newly settled stream segments had relatively low gradients (β ± SE = ?0.72 ± 0.27), narrow channels (β = ?1.31 ± 0.46), high channel complexity (β = 0.76 ± 0.42), high canopy cover of woody riparian vegetation (β = 0.56 ± 0.21), and low‐lying areas directly adjacent to the stream (β = 0.36 ± 0.24), where β denotes covariate effect sizes. Habitat selection patterns differed between our new settlement site analysis and an analysis of occupied versus unoccupied stream segments, suggesting that assessing habitat suitability based on active colonies may result in misidentification of suitable site conditions for beaver restoration. Our research provides recommendations for beaver restoration practitioners to select restoration sites that will have the highest probability of successful colony establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号