首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

2.
祖悦晴  魏妍儿  张曦文  于德永 《生态学报》2022,42(17):6937-6947
快速的城市化过程带来的生境斑块破碎化及损失会影响物种迁移、捕食等生态活动,对生物多样性构成威胁。然而,现有生态保护区可能无法覆盖其内生物的必要活动范围。生态保护区外的生境斑块对于维持生态过程也具有重要作用,因此识别生态保护区外的关键斑块并加以保护非常重要。以北京市延庆区为研究区,划分两种生境斑块,即核心生境斑块和潜在生境斑块,并基于图论构建生境网络。考虑地表覆盖类型、坡度、人类活动等因素构建生境阻力面。结合未来土地利用类型变化的模拟,研究城市化过程对区域生境网络和景观连接度的影响,选用CLUE-S模型模拟土地利用类型变化的格局。结合生境斑块特征和未来城市土地利用变化情况设计了3种未来生境变化情景。利用连接概率指数(PC)和网络连接度变化率(dI)评价不同生境变化情景下生态保护区外潜在生境斑块的景观连接度重要性,判断保护优先顺序,并分析景观格局变化对不同迁移能力物种的影响。结果表明:生态保护区外的全部潜在生境斑块对维持生境整体景观连接度有最大2.15%的影响,单个潜在生境斑块对维持景观连接度有最大0.28%的影响。此外,景观格局及其变化对不同迁移能力物种的影响差异显著,因此需针对保护物种和城市生境特征设计保护方案,研究区需要优先保护大中型斑块和位于关键位置的小型斑块。为了满足对生物多样性保护的需求,建议在区分生境斑块保护优先顺序时考虑生境斑块对景观连接度的贡献和城市化扩展过程的压力。研究为城市生物多样性保护和生境管理提供了方法参考。  相似文献   

3.
Landscape ecology plays a vital role in understanding the impacts of land‐use change on biodiversity, but it is not a predictive discipline, lacking theoretical models that quantitatively predict biodiversity patterns from first principles. Here, we draw heavily on ideas from phylogenetics to fill this gap, basing our approach on the insight that habitat fragments have a shared history. We develop a landscape ‘terrageny’, which represents the historical spatial separation of habitat fragments in the same way that a phylogeny represents evolutionary divergence among species. Combining a random sampling model with a terrageny generates numerical predictions about the expected proportion of species shared between any two fragments, the locations of locally endemic species, and the number of species that have been driven locally extinct. The model predicts that community similarity declines with terragenetic distance, and that local endemics are more likely to be found in terragenetically distinctive fragments than in large fragments. We derive equations to quantify the variance around predictions, and show that ignoring the spatial structure of fragmented landscapes leads to over‐estimates of local extinction rates at the landscape scale. We argue that ignoring the shared history of habitat fragments limits our ability to understand biodiversity changes in human‐modified landscapes.  相似文献   

4.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

5.
6.
7.
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal‐scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans, in South‐ and Mid‐Finland. We used presence–absence data (n = 10,032 plots of 9 ha) and novel approach to separate the effects on site‐, landscape‐, and regional‐level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape‐level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large‐scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.  相似文献   

8.
矿产开采等人类活动极大地改变着生态环境和景观格局, 景观变化又是导致区域和全球物种多样性丧失的主要原因之一。然而, 物种多样性对周边景观变化响应的时间尺度问题往往被人们忽略。作者以内蒙古草原区伊敏露天煤矿为例, 从物种和功能群两个层次上, 探讨了不同的空间范围(1 km、2 km、3 km、4 km、6 km、8 km、10 km)内在不同时期(1975年、1990年、2000年、2010年)的景观格局(景观优势度指数、生境综合连接度指数和生境连接度概率指数)与生物多样性之间的关系。结果显示: 当前物种多样性与开矿前和开矿初期周边景观格局之间的相关性更高, 而且与4–8 km缓冲区范围内景观格局之间的关系更加密切。不同功能群物种丰富度与景观格局之间的关系不同, 其中, 多年生根茎禾草物种丰富度和当前小尺度(1–3 km)景观格局之间呈显著相关; 多年生杂类草和开矿前和开矿初期大尺度(4–10 km)景观格局之间相关显著; 多年生丛生禾草与景观格局的相关性并未达到显著水平, 但是随着空间尺度的增加出现单峰趋势, 在6 km范围上最高; 灌木、半灌木与景观格局的相关关系随着空间尺度的增加而增加; 一二年生草本与景观格局的相关性始终最低。为此, 本文得出如下结论: (1)物种多样性对周边景观格局变化的响应存在一定时间的滞后, 人类当前不合理的土地利用方式可能引起未来一段时间内该地区一些物种的消失; (2)区域种库决定小尺度物种多样性的大小, 研究区4–8 km范围内具有连通性的生境斑块是主要的种库资源; (3)植物的繁殖策略及种子传播方式是破碎化生境中物种多样性维持的重要机制。  相似文献   

9.
Evaluating impacts to biodiversity requires ecologically informed comparisons over sufficient time spans. The vulnerability of coastal ecosystems to anthropogenic and climate change‐related impacts makes them potentially valuable indicators of biodiversity change. To evaluate multidecadal change in biodiversity, we compared results from intertidal surveys of 13 sandy beaches conducted in the 1970s and 2009–11 along 500 km of coast (California, USA). Using a novel extrapolation approach to adjust species richness for sampling effort allowed us to address data gaps and has promise for application to other data‐limited biodiversity comparisons. Long‐term changes in species richness varied in direction and magnitude among beaches and with human impacts but showed no regional patterns. Observed long‐term changes in richness differed markedly among functional groups of intertidal invertebrates. At the majority (77%) of beaches, changes in richness were most evident for wrack‐associated invertebrates suggesting they have disproportionate vulnerability to impacts. Reduced diversity of this group was consistent with long‐term habitat loss from erosion and sea level rise at one beach. Wrack‐associated species richness declined over time at impacted beaches (beach fill and grooming), despite observed increases in overall intertidal richness. In contrast richness of these taxa increased at more than half (53%) of the beaches including two beaches recovering from decades of off‐road vehicle impacts. Over more than three decades, our results suggest that local scale processes exerted a stronger influence on intertidal biodiversity on beaches than regional processes and highlight the role of human impacts for local spatial scales. Our results illustrate how comparisons of overall biodiversity may mask ecologically important changes and stress the value of evaluating biodiversity change in the context of functional groups. The long‐term loss of wrack‐associated species, a key component of sandy beach ecosystems, documented here represents a significant threat to the biodiversity and function of coastal ecosystems.  相似文献   

10.
《Global Change Biology》2018,24(1):308-321
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3‐km sites within the Upper Neosho River subdrainage, KS, from June‐August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal‐habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human‐altered ecosystems.  相似文献   

11.
The South African grassland biome is one of the most threatened biomes in South Africa. Approximately 45% of the grassland biome area is transformed, degraded or severely invaded by alien plants and the remaining natural areas are highly fragmented. In this fragmented landscape, the connectivity between habitat patches is very important to maintain viable populations. In this study we aimed to quantify connectivity of the grassland biome in Mpumalanga using graph theory in order to identify conservation priorities and to direct conservation efforts. Graph theory‐based connectivity indices have the ability to combine spatially explicit habitat data with species specific dispersal data and can quantify structural and functional connectivity over large landscapes. We used these indices to quantify the overall connectivity of the study area, to determine the influence of abandoned croplands on overall connectivity, and to identify the habitat patches and vegetation types most in need of maintaining overall connectivity. Natural areas were identified using 2008 land cover data for Mpumalanga. Connectivity within the grassland biome of Mpumalanga was analysed for grassland species with dispersal distances ranging from 50 to 1000 m. The grassland habitat patches were mostly well connected, with 99.6% of the total habitat area connected in a single component at a threshold distance of 1000 m. The inclusion of abandoned croplands resulted in a 33% increase in connectivity at a threshold distance of 500 m. The habitat patches most important for maintaining overall connectivity were the large patches of continuous habitat in the upper and lower centres of the study area and the most important vegetation types were the Wakkerstroom Montane Grassland and the Eastern Temperate Freshwater Wetlands. These results can be used to inform management decisions and reserve design to improve and maintain connectivity in this biome.  相似文献   

12.
Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~ 85 000 plant species across the New World. We assess prominent hypothesised range‐size controls, finding that plant range sizes are codetermined by habitat area and long‐ and short‐term climate stability. Strong short‐ and long‐term climate instability in large parts of North America, including past glaciations, are associated with broad‐ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small‐ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity.  相似文献   

13.
A fundamental part of developing effective biodiversity conservation is to understand what factors affect the distribution and abundance of particular species. However, there is a paucity of data on ecological requirements and habitat relationships for many species, especially for groups such as reptiles. Furthermore, it is not clear whether habitat relationships for particular species in a given environment are transferable to other environments within their geographical range. This has implications for the type of ‘landscape model’ used to guide management decisions in different environments worldwide. To test the hypothesis that species‐specific habitat relationships are transferable to other environments, we present microhabitat models for five common lizard species from a poorly studied habitat – insular granite outcrops, and then compared these relationships with studies from other environments in south‐eastern Australia. We recorded twelve species from five families, representing 699 individuals, from 44 outcrops in the south‐west slopes of New South Wales. Five lizard species were abundant and accounted for 95% of all observations: Egernia striolata, Ctenotus robustus, Cryptoblepharus carnabyi, Morethia boulengeri and Carlia tetradactyla (Scincidae). Linear regression modelling revealed suites of different variables related to the abundance patterns of individual species, some of which were broadly congruent with those measured for each species in other environments. However, additional variables, particular to rocky environments, were found to relate to reptile abundance in this environment. This finding means that species' habitat relationships in one habitat may not be readily transferable to other environments, even those relatively close by. Based on these data, management decisions targeting reptile conservation in agricultural landscapes, which contain rocky outcrops, will be best guided by landscape models that not only recognize gradients in habitat suitability, but are also flexible enough to incorporate intraspecies habitat variability.  相似文献   

14.
Positive effects of habitat patch size on biodiversity are often extrapolated to infer negative effects of habitat fragmentation on biodiversity at landscape scales. However, such cross-scale extrapolations typically fail. A recent, landmark, patch-scale analysis (Chase et al., 2020, Nature 584, 238–243) demonstrates positive patch size effects on biodiversity, that is, ‘ecosystem decay’ in small patches. Other authors have already extrapolated this result to infer negative fragmentation effects, that is, higher biodiversity in a few large than many small patches of the same cumulative habitat area. We test whether this extrapolation is valid. We find that landscape-scale patterns are opposite to their analogous patch-scale patterns: for sets of patches with equal total habitat area, species richness and evenness decrease with increasing mean size of the patches comprising that area, even when considering only species of conservation concern. Preserving small habitat patches will, therefore, be key to sustain biodiversity amidst ongoing environmental crises.  相似文献   

15.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

16.
In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation‐forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185‐km2) complex conifer plantation landscape in 2009 and 2010. Home‐range 95% kernels for females, paired males and unpaired males were an order of magnitude larger than song territories of paired males, emphasizing the importance of habitats beyond the song territory. Nightjars travelled a mean maximum distance of 747 m from the territory centre each night. Home‐range placement relative to landscape composition was examined by compositional analysis. Pre‐closure canopy forest (aged 5–10 years) was selected at all scales (MCP, 95% and 50% kernels), with newly planted forest (aged 0–4 years) also selected within 50% kernels. For telemetry fixes relative to habitat composition within 2 km of their territory centre, individuals again selected pre‐closure and newly planted forest, and also grazed grass heath. Open ungrazed habitat was not selected, with implications for open habitat planning for biodiversity conservation within public‐owned forests. Despite the Nightjars’ selection for younger growth, moth biomass was greater in older forest stands, suggesting that foraging site selection reflects ease of prey capture rather than prey abundance. Within large plantation‐forest landscapes, a variety of growth stages is important for this species and our results suggest that grazing of open habitats within and adjacent to forest will additionally benefit the European Nightjar.  相似文献   

17.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

18.
Human depopulation of rural mountain areas and the consequent abandonment of traditional land management are among the greatest driving forces behind changes in mountain ecosystems in Western Europe. Tree and shrub encroachment lead to an increase in landscape matrix uniformity and habitat fragmentation. For some animal species, this represents an unusual case of habitat loss caused by secondary succession. The animal species associated with this agro‐pastoral habitat may suffer from decreased connectivity as a consequence. The Rock Partridge Alectoris graeca is a species endemic to European mountains that represents a model for investigating the impact of habitat loss. We compared the habitat suitability of the Apennine Rock Partridge prior to abandonment of traditional agro‐pastoral activities by aerial photography with the current landscape, in order to investigate the effect of secondary succession on the distribution and viability of the species. We assessed the historical distribution (c. 1900–1950) by quantifying anecdotal evidence from interviews, and the current distribution (2005) from survey data. We applied ecological niche factor analysis and connectivity approaches to evaluate change in habitat suitability over this time scale. Moreover, to quantify landscape connectivity, we evaluated the relative importance of each patch in the two periods. Results indicated that to maintain a viable population in the Apennines, the species requires an ensemble of ecological conditions considerably different from the current situation. We observed a drastic decrease in connectivity as a result of a reduction in numbers and size of high suitability patches. This is most probably the primary cause of the current decline of the Rock Partridge population in the Apennines.  相似文献   

19.
Species that specialize in disturbed habitats may have considerably different dispersal strategies than those adapted to more stable environments. However, little is known of the dispersal patterns and population structure of such species. This information is important for conservation because many postfire specialists are at risk from anthropogenic changes to natural disturbance regimes. We used microsatellite markers to assess the effect of landscape variation and recent disturbance history on dispersal by a small mammal species that occupies the early seral stage of vegetation regeneration in burnt environments. We predicted that a postfire specialist would be able to disperse over multiple habitat types (generalist) and not exhibit sex‐biased dispersal, as such strategies should enable effective colonization of spatially and temporally variable habitat. We found significant differentiation between sites that fitted an isolation‐by‐distance pattern and spatial autocorrelation of multilocus genotypes to a distance of 2–3 km. There was no consistent genetic evidence for sex‐biased dispersal. We tested the influence of different habitat‐ and fire‐specific landscape resistance scenarios on genetic distance between individuals and found a significant effect of fire. Our genetic data supported recently burned vegetation having greater conductance for gene flow than unburnt habitat, but variation in habitat quality between vegetation types and occupied patches had no effect on gene flow. Postfire specialists must evolve an effective dispersal ability to move over distances that would ensure access to early successional stage vegetation. Natural disturbance and natural heterogeneity may therefore not influence population genetic structure as negatively as expected.  相似文献   

20.
Land‐use changes, which cause loss, degradation, and fragmentation of natural habitats, are important anthropogenic drivers of biodiversity change. However, there is an ongoing debate about how fragmentation per se affects biodiversity in a given amount of habitat. Here, we illustrate why it is important to distinguish two different aspects of fragmentation to resolve this debate: (a) geometric fragmentation effects, which exclusively arise from the spatial distributions of species and habitat fragments, and (b) demographic fragmentation effects due to reduced fragment sizes, and/or changes in fragment isolation, edge effects, or species interactions. While most empirical studies are primarily interested in quantifying demographic fragmentation effects, geometric effects are typically invoked as post hoc explanations of biodiversity responses to fragmentation per se. Here, we present an approach to quantify geometric fragmentation effects on species survival and extinction probabilities. We illustrate this approach using spatial simulations where we systematically varied the initial abundances and distribution patterns (i.e., random, aggregated, or regular) of species as well as habitat amount and fragmentation per se. As expected, we found no geometric fragmentation effects when species were randomly distributed. However, when species were aggregated, we found positive effects of fragmentation per se on survival probability for a large range of scenarios. For regular species distributions, we found weakly negative geometric effects. These findings are independent of the ecological mechanisms which generate nonrandom species distributions. Our study helps to reconcile seemingly contradictory results of previous fragmentation studies. Since intraspecific aggregation is a ubiquitous pattern in nature, our findings imply widespread positive geometric fragmentation effects. This expectation is supported by many studies that find positive effects of fragmentation per se on species occurrences and diversity after controlling for habitat amount. We outline how to disentangle geometric and demographic fragmentation effects, which is critical for predicting the response of biodiversity to landscape change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号