首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the validity of current theory for predicting ecological and allometric effects on space use, social structure and mating systems of poorly known solitary cervids, based on a comparative analysis of radio-telemetry data on hog deer Axis porcinus (N=32) and Indian muntjac Muntiacus muntjak (N=28). The larger and sexually size-dimorphic hog deer inhabit highly productive alluvial floodplains, where resource distribution is patchy and spatiotemporally unpredictable. As predicted for this species, site fidelity was low and range sizes varied among sex and age groups and among seasons. Hog deer were probably non-territorial, as home range sizes seemed too large to be exclusive when taking into account their high population density. Extensive movements of adult males during the rut implied "roaming" as a mating strategy. The smaller, forest-dwelling and sexually size-monomorphic muntjacs inhabit a more uniform and stable habitat. As predicted, muntjacs exhibited higher site fidelity than hog deer, and no seasonal variations in home range sizes. Adults exhibited relatively large home range overlap, both inter- and intrasexually. Hence, strict territoriality did not occur, but their well-defined home ranges and high site fidelity indicated some form of site-specific dominance. In conclusion, habitat characteristics were appropriate predictors of home range sizes and site fidelity. Body mass appeared to be a suitable predictor of intraspecific patterns in space use but a poor predictor of interspecific patterns, probably due to a confounding effect of habitat productivity.  相似文献   

2.
Kirk M  Esler D  Iverson SA  Boyd WS 《Oecologia》2008,155(4):859-867
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated.  相似文献   

3.
Information on site fidelity and ranging patterns of wild animals is critical to understand how they use their environment and guide conservation and management strategies. Delphinids show a wide variety of site fidelity and ranging patterns. Between September 2013 and October 2015, we used boat‐based surveys, photographic identification, biopsy sampling, clustering analysis, and geographic information systems to determine the site‐fidelity patterns and representative ranges of southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting the inner area of Coffin Bay, a highly productive inverse estuary located within Thorny Passage Marine Park, South Australia. Agglomerative hierarchical clustering (AHC) of individuals’ site‐fidelity index and sighting rates indicated that the majority of dolphins within the inner area of Coffin Bay are “regular residents” (n = 125), followed by “occasional residents” (n = 28), and “occasional visitors” (n = 26). The low standard distance deviation indicated that resident dolphins remained close to their main center of use (range = 0.7–4.7 km, X ± SD = 2.3 ± 0.9 km). Representative ranges of resident dolphins were small (range = 3.9–33.5 km2, X ± SD = 15.2 ± 6.8 km2), with no significant differences between males and females (Kruskal–Wallis, χ2 = 0.426, = .808). The representative range of 56% of the resident dolphins was restricted to a particular bay within the study area. The strong site fidelity and restricted ranging patterns among individuals could be linked to the high population density of this species in the inner area of Coffin Bay, coupled with differences in social structure and feeding habits. Our results emphasize the importance of productive habitats as a major factor driving site fidelity and restricted movement patterns in highly mobile marine mammals and the high conservation value of the inner area of Coffin Bay for southern Australian bottlenose dolphins.  相似文献   

4.
5.
Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.  相似文献   

6.
The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1–2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.  相似文献   

7.
The movement of individuals within preferred areas is reduced by a high availability of food and information about its distribution, while high number of competitors promotes increased movement. Experienced animals use information about social and physical environment to improve resources exploitation, tended to maintain positions within the preferred areas and reuse the environment that is often referred to as site fidelity. In this study, radio‐telemetry was used to observe the movements of 98 adult brown trout, Salmo trutta, in oligotrophic streams with different population densities; to determine subpopulation site fidelity, 5,195 conspecifics from 14 subpopulations were individually tagged during spring and autumn. During a 7‐year‐long field study, we tested the hypothesis that brown trout individuals from subpopulations with high site fidelity would display lower movement. The hypothesis was supported, and reduced movement was further related to high subpopulation density in association with high slope indicating the physical environment‐influenced movement. The probability of contact between individuals increased with subpopulation site fidelity and subpopulation density. No influence of food abundance on brown trout movement was found. Furthermore, increased body size predicted higher movement (and vice versa). The least movement occurred during the day and during the full moons. Our study tended to show that individuals reused preferred areas and needed less movement to exploit available resources.  相似文献   

8.
Understanding animal distributions and habitat utilisation is vital for the management of populations, especially those of endangered species. However, this information is not available for the majority of marine species and is difficult to obtain for those with low population densities. The common skate, Dipturus batis, was once abundant and widespread in the North-East Atlantic but is now thought to be locally extinct in the Irish Sea and in the central and southern North Sea, and is listed as Critically Endangered on the IUCN Red List. The constraints of skate body morphology on locomotory mode assume low levels of activity with long periods spent resting on the seabed, therefore predicting a high degree of site fidelity. To investigate this hypothesis we tagged 8 common skate (two male and six female, mass range: 10.9–63.5 kg) with depth and temperature-logging data storage tags off the west coast of Scotland in May 2008. All 6 tags attached to females were recovered after 1–9 months at liberty. All 6 individuals exhibited pronounced site fidelity to highly localised areas. Within these local areas however, time-depth profiles were dominated by periods of high activity, with vertical movements of > 100 m being conducted on a regular, sometimes daily, basis. Intra-individual plasticity was observed in vertical activity patterns with individuals switching between low and high activity patterns. Smaller skate were generally less active and occupied deeper depths. Limited short-term horizontal movements in preferred habitats supporting apparently high foraging activity highlights the need for spatial management of ‘refugial’ populations of this once widespread fish, that appears now largely extirpated from European waters.  相似文献   

9.
In the Pacific, rough-toothed dolphins ( Steno bredanensis ) are typically found in the open ocean and in deep waters around oceanic islands. We examined habitat use, site fidelity, movements, and association patterns of this species in the main Hawaiian Islands. Sighting rates were highest in depths >1,500 m. There were frequent within- and between-year resightings off the island of Hawai'i, indicating a small population size with high site fidelity. Resighting rates were lower off Kaua'i/Ni'ihau, indicating a larger population size, but with some site fidelity. Two individuals were documented moving from Kaua'i to Hawai'i, a distance of 480 km, but were not seen to associate with dolphins off Hawai'i. Observed movements were consistent with at most 2% dispersal per year between these two areas. Differences in group sizes, habitat use, and behavior imply that movements among the islands may be limited. Little is known about the diet of rough-toothed dolphins in Hawai'i, but they are thought to feed primarily on near-surface species. High fidelity to deep-water areas off the island of Hawai'i likely reflects an increase in the predictability of prey associated with upwelling due to the island mass effect, wind stress curl and cyclonic eddies that form off the island.  相似文献   

10.
One of the major challenges in animal ecology is to understand the factors and processes driving movement behaviour. Although density may influence movement patterns, the occurrence and nature of density‐dependence in animal movements are still unclear, particularly whether it may vary among populations of a species, or across time within a population. Here, we evaluate the occurrence and nature of density‐dependence in the movements of a Neotropical marsupial, the Grey four‐eyed opossum Philander frenatus (Didelphidae, Didelphimorphia). We quantified fine‐scale path tortuosity of individuals inhabiting continuous forest areas and forest fragments, in different climatic seasons (humid vs. super‐humid). We also determined the relative importance of population size compared to sex and body mass on movements, using a model‐selection approach. In forest fragments, path tortuosity increased with population size in the super‐humid season, but decreased in the humid season. In the continuous forest, path tortuosity was affected only by sex and body mass, being slightly higher in males and negatively related to body mass. The occurrence of density‐dependence on movements only in forest fragments is likely to reflect the higher overall density of P. frenatus in small forest fragments. The variation in the nature of density‐dependence between climatic seasons is likely to reflect a trade off between foraging over large areas (humid season, low resource availability) versus avoiding agonistic encounters (super‐humid season, high resource availability). Our results show that (i) density‐dependence in movements may be context‐dependent occurring only in areas of relatively high overall population density; and (ii) density may affect movements in different ways at different climatic seasons.  相似文献   

11.
The radiation of neotropical echimyid rodents resulted in the diversification of spiny rats, hutias, and the coypu, grouped into four major clades. Different echimyid lineages specialized for terrestrial, semifossorial, semiaquatic, and arboreal locomotion, and for living in bamboo thickets. Comparative phylogenetic methods were herein used for evaluating the relative effect of historical and ecological factors in shaping morphometric traits of external morphology (length of head and body, tail, ear, and hindfeet). Additionally, we investigated whether the adoption of different locomotory habits was associated with changes in their macroevolutionary dynamics. Our findings showed that variation of all traits was phylogenetically structured, although size was less structured than other traits. Tail, ear, and mainly hindfeet were allometrically correlated with head and body length, indicating the occurrence of evolutionary structural constraints. In addition to phylogenetic and allometric components, morphometric variation was strongly associated with locomotory specializations, except for body size. Disparification of body size and tail length took place gradually, fitting the Brownian motion model albeit with some punctual shifts in evolutionary rates. Some of these shifts were associated with changes in locomotory habits, notably with adoption of a semiaquatic habit by the large‐sized Myocastor lineage, which occurred with an accelerated rate of size evolution. Evolutionary changes in ear and hindfeet length were concentrated during early echimyid diversification, concomitantly with the emergence of most locomotory habits, with subsequent deceleration of evolutionary rates. These findings indicated a complex interaction between phylogenetic, structural, and ecological effects gradually shaping echimyid external morphology.  相似文献   

12.
New World species of the Hystricognathi comprise a group of rodents that exhibit poorly understood social behaviour. One such species, the echimyid Thrichomys apereoides, has a behavioural and social repertoire which suggests the use of its eversible anal gland in communication between individuals; however, no information on the morphology of this gland is available. In this study, the anal gland of nineteen adult individuals (11 males and 8 females) was analysed through histological and histochemical techniques. The gland was located in the submucosal of the anal region, cranial to the anus, and had an opening located dorsally in the rectum mucosa at approximately 1 mm from the anus. The gland was characterized as seromucous, secreting neutral glycoprotein. Not all individuals studied presented secretion in the glandular ducts, indicating a possible functional variation in the gland. This was the first record of an anal gland of the seromucous type in rodents.  相似文献   

13.
Summary Ecological interpretation of space use patterns often suffers from two methodological problems: inadequate number of captures per individual and pooling of data over time intervals. Insufficient sample size biases the computation of spatial areas, while pooling data over time intervals may mask shifts in space use due to changes in resource abundance. Radiotelemetry was used to alleviate these problems in an analysis of space use by the hispid cotton rat (Sigmodon hispidus). Home range area was greater for males than females, was largest during summer and winter months, was positively correlated with body hass, and was negatively correlated with population dencity. Exclusivity of home range revealed a high degree of ntolerance (41% exclusivity) and was positively correlated with body mass for males. In addition, like-sex categories (male-male, female-female) were more exclusive than unlike sex categories (male-female).Habitat composition of home ranges of females was significantly different from that of males and from that available. This result suggested home ranges of females were responsive to habitat composition (and quality), while males may respond more to female occurrence than resource availability.Space-use patterns of the hispid cotton rat indicated a solitary existence with greater tolerance of individuals of the opposite sex. Home range size decreased as population size increased, whereas home range overlaps were not affected by population density. These results reinforced the view of a dominance hierarchy in this species and suggested the existence of a polygynous mating system.  相似文献   

14.
Adult male chimpanzees inherit maternal ranging patterns   总被引:3,自引:0,他引:3  
Space use often correlates with reproductive success [1, 2]. Individual site fidelity is ubiquitous across a variety of taxa, including birds, mammals, insects, and reptiles [3-9]. Individuals can benefit from using the same area because doing so affords access to known resources, including food and/or breeding sites. The majority of studies on site fidelity have focused upon strictly territorial species in which individuals range in well-defined, exclusive areas (e.g., [4, 9]). By comparison, the transient groups that define fission-fusion species allow for considerable flexibility in individual space use. Although there is evidence that individual space use can influence reproductive success [2], relatively little is known about individual ranging patterns in fission-fusion species. Here, we investigate three potential correlates of male site fidelity (age, habitat quality, and maternal space use) in wild chimpanzees (Pan troglodytes). We found that when alone, each male preferentially concentrated his space use near the area where his mother ranged when he was dependent. We suggest that solitary ranging allows males to avoid direct competition with conspecifics and that foraging in familiar areas maximizes foraging efficiency. These results highlight the importance of male foraging strategies in a species in which male ranging is typically explained in terms of mating access to females.  相似文献   

15.
Burrow structure and foraging costs in the fossorial rodent,Thomomys bottae   总被引:2,自引:0,他引:2  
D. Vleck 《Oecologia》1981,49(3):391-396
Summary A model for calculating the energy cost of burrowing by fossorial rodents is presented and used to examine the energetics of foraging by burrowing. The pocket gopher Thomomys bottae (Rodentia: Geomyidae) digs burrows for access to food. Feeding tunnels of Thomomys are broken into segments by laterals to the surface that are used to dispose of excavated soil. Energy cost of burrowing depends on both soil type and on burrow structure, defined by the length of burrow segments, angle of ascent of laterals, depth of feeding tunnels, and burrow diameter. In a desert scrub habitat, Thomomys adjust burrow segment length to minimize cost of burrowing. Observed segment lengths (mean=1.33 m) closely approximate the minimum-cost segment length of 1.22 m. Minimizing energy expended per meter of tunnel constructed maximizes efficiency of foraging by burrowing in the desert scrub. Burrow diameter and cost of burrowing increase with body size, while benefits do not, so foraging by burrowing becomes less enconomical as body size increases. Maximum possible body size of fossorial mammals depends on habitat productivity and energy cost of burrowing in local soils.  相似文献   

16.
Abstract Body mass is considered a major determinant of home range size, but usually at a large scale of body mass variation. The exact scale where body size becomes more important than particular adaptations of each species is not clear, and uncertainty in the estimate of home range size is a possible cause of weak intraspecific scaling. We determine the scaling to body mass of two alternative movement measurements, daily home range (DHR) and its intensity of use (IU), in three species of didelphid marsupials, Didelphis aurita, Philander frenatus, and Metachirus nudicaudatus (Didelphimorphia, Didelphidae). The expected scaling exponents DHR ≈ M0.5 and IU ≈ M?0.25 were derived from the scaling to body mass of home range and daily movement distance. Animals were tracked in Serra dos Órgãos, Rio de Janeiro, Brazil, using a spool‐and‐line device. Individuals of the three species were compared combining intra and interspecific variation in a single analysis, with species, body mass, and thread tracked as covariates. The model best supported included only body mass as the independent variable, with DHR ≈ M0.435 and IU ≈ M?0.218, close to the expected values. The second best supported model included species identity, but with a non‐significant effect. It was surprising that body mass was more important than species identity in a comparison involving only three species, and considering the morphological and locomotory adaptations of the three species. Body mass may become more important than species identity when the scale of variation approaches one order of magnitude.  相似文献   

17.
One of the most widely accepted explanations for the difference in the sex bias between mammals and birds is that male-biased dispersal in mammals is due to the preponderance of polygynous mating systems exhibited by this class, whereas birds are predominantly monogamous. Spectral tarsiers (Tarsius spectrum) are unusual in that they exhibit variation in its mating system. Although the majority of spectral tarsier groups are monogamous, ca. 15% are polygynous. If mating system influences dispersal, then I predicted that the polygynous groups would exhibit male biased dispersal whereas I predicted that the dispersal patterns of the monogamous groups would be analogous to that exhibited by birds, specifically female biased. Alternatively, I hypothesized that ecological variation may influence dispersal habits in this species. Specifically, I predicted that polygynous groups would exhibit greater habitat quality than monogamous groups. The 2 hypotheses are not mutually exclusive. On the basis of 14 individuals birdbanded between 1994 and 1999, I determined that individuals of both sexes were equally likely to disperse (males, n = 5; females, n = 9). Males dispersed twice as far as females did. The mean dispersal distance for males was 660 m, and for females it was 266 m. Females (77%) were more likely to form a territory adjacent to the parental territory than were males (20%). Individuals exhibited relatively high amounts of site fidelity (86%) that were related to physical characteristics of the sleeping site. Adults that dispersed a second time (n = 4) initially resided in trees that were shorter and had a smaller diameter-at-breast height than the trees of individuals that exhibited site fidelity. The results of my study partly support the parental mating system hypothesis and also support the habitat quality hypothesis.  相似文献   

18.
Burrowing, iocomotory and other movements of the echiuran Ochetostoma caudex have been examined and discussed. A continuous body cavity enables the worm to undergo peristaltic waves to pump water through the burrow without causing locomotion. The animal is capable of both forward and backward locomotion in its burrow. During forward locomotion, retrograde peristaltic waves are utilized which advance the animal in a step-wise fashion. Pressure changes within the coelom during burrowing, locomotion and during irrigation movements have been measured with the use of electronic recording techniques and the results interpreted in relation to direct visual observation. The structural and functional specializations for burrowing are discussed and compared with the activities of Priapulus caudatus, Sipunculus nudus and Bonellia viridis.  相似文献   

19.
Animals often increase their fitness by moving across space in response to temporal variation in habitat quality and resource availability, and as a result of intra and inter‐specific interactions. The long‐term persistence of populations and even whole species depends on the collective patterns of individual movements, yet animal movements have been poorly studied at the landscape level. We quantified movement behavior within four native species of Hawaiian forest birds in a complex lava‐fragmented landscape: Hawai?i ‘amakihi Chlorodrepanis virens, ‘oma‘o Myadestes obscurus, ‘apapane Himatione sanguinea, and ‘i‘iwi Drepanis coccinea. We evaluated the relative importance of six potential intrinsic and extrinsic drivers of movement behavior and patch fidelity: 1) forest fragment size, 2) the presence or absence of invasive rats (Rattus sp.), 3) season, 4) species, 5) age, and 6) sex. The study was conducted across a landscape of 34 forest fragments varying in size from 0.07 to 12.37 ha, of which 16 had rats removed using a treatment‐control design. We found the largest movements in the nectivorous ‘apapane and ‘i‘iwi, intermediate levels in the generalist Hawai?i ‘amakihi, and shortest average movement for the ‘oma‘o, a frugivore. We found evidence for larger patch sizes increasing patch fidelity only in the ‘oma‘o, and an effect of rat‐removal increasing patch fidelity of Hawai?i ‘amakihi only after two years of rat‐removal. Greater movement during the non‐breeding season was observed in all species, and season was an important factor in explaining higher patch fidelity in the breeding season for ‘apapane and ‘i‘iwi. Sex was important in explaining patch fidelity in ‘oma‘o only, with males showing higher patch fidelity. Our results provide new insights into how these native Hawaiian species will respond to a changing environment, including habitat fragmentation and changing distribution of threats from climate change.  相似文献   

20.
Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor’s checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were exhibited; patrolling and perching. These strategies varied temporally in relation to the protandrous mating system employed. Among perching males, we recorded high site fidelity and aggressive defense of small (<5 m2) territories. This territoriality was not clearly a function of classic or non-classic resource defense (i.e., host plants or landscape), but rather appeared to constitute guarding of female pupae (virgin females). This discrete behavior is previously undocumented for this species and has rarely been observed in butterflies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号