首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract Invasive species have been hypothesized to out‐compete natives though either a Jack‐of‐all‐trades strategy, where they are able to utilize resources effectively in unfavourable environments, a master‐of‐some, where resource utilization is greater than its competitors in favourable environments, or a combination of the two (Jack‐and‐master). We examined the invasive strategy of Berberis darwinii in New Zealand compared with four co‐occurring native species by examining germination, seedling survival, photosynthetic characteristics and water‐use efficiency of adult plants, in sun and shade environments. Berberis darwinii seeds germinated more in shady sites than the other natives, but survival was low. In contrast, while germination of B. darwinii was the same as the native species in sunny sites, seedling survival after 18 months was nearly twice that of the all native species. The maximum photosynthetic rate of B. darwinii was nearly double that of all native species in the sun, but was similar among all species in the shade. Other photosynthetic traits (quantum yield and stomatal conductance) did not generally differ between B. darwinii and the native species, regardless of light environment. Berberis darwinii had more positive values of δ13C than the four native species, suggesting that it gains more carbon per unit water transpired than the competing native species. These results suggest that the invasion success of B. darwinii may be partially explained by combination of a Jack‐of‐all‐trades scenario of widespread germination with a master‐of‐some scenario through its ability to photosynthesize at higher rates in the sun and, hence, gain a rapid height and biomass advantage over native species in favourable environments.  相似文献   

3.
Parasite fauna of round goby Neogobius melanostomus (Pallas, 1814) in the Danube River was investigated in both its native range (two sites in the Bulgarian stretch of the Danube) and non‐native range of distribution (Croatian, Slovak and Austrian stretches) during 2005 and 2006. The aim was to identify possible changes in parasite communities associated with the introduction of a host into the new environment. A total of 29 metazoan parasite species were found to parasitize round goby in the Danube River; twelve of these parasite species were found in both the native and non‐native range of distribution. Introduction of a novel parasite species to the non‐native range via the round goby was not found. Eight parasite species occurred only in the native range and nine species only in the non‐native range of the round goby distribution. Losses of native parasite species in non‐native round goby populations and/or acquiring of novel parasite species in a new environment were not significant. Thirteen parasite taxa were recorded for the first time in round gobies. Three parasite taxa (Diplostomum spp., Pomphorhynchus laevis and Raphidascaris acus) were found in high prevalence and abundance at each sampling site in both the native and non‐native range. Parasite species diversity was assessed for each sampling site and season using three diversity indices (the Shannon, Simpson and Equitability indices), with the highest same‐season values found in a non‐native site in Slovakia (1.38, 0.69 and 0.60, respectively) and the lowest in a native site in Bulgaria (0.28, 0.12 and 0.14, respectively). Species diversity was higher in both non‐native round goby populations (Slovak and Austrian) compared to native Bulgarian populations. However, diversity indices values varied among almost all sampling sites.  相似文献   

4.
Humans are altering the global distributional ranges of plants, while their co‐evolved herbivores are frequently left behind. Native herbivores often colonise non‐native plants, potentially reducing invasion success or causing economic loss to introduced agricultural crops. We developed a predictive model to forecast novel interactions and verified it with a data set containing hundreds of observed novel plant–insect interactions. Using a food network of 900 native European butterfly and moth species and 1944 native plants, we built an herbivore host‐use model. By extrapolating host use from the native herbivore–plant food network, we accurately forecasted the observed novel use of 459 non‐native plant species by native herbivores. Patterns that governed herbivore host breadth on co‐evolved native plants were equally important in determining non‐native hosts. Our results make the forecasting of novel herbivore communities feasible in order to better understand the fate and impact of introduced plants.  相似文献   

5.
6.
7.
Trophic relations among introduced species may induce highly variable and complex effects in communities and ecosystems. However, studies that identify the potential impacts for invaded systems and illuminate mechanisms of coexistence with native species are scarce. Here, we examined trophic relations between two introduced fishes in streams of NW Patagonia, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). These species originate from different regions of the Northern Hemisphere but they now coexist as invading species over the world. We used gastric contents and stable isotopes analysis to compare the diets of two size‐classes of these two invaders in three localities of southern Chile. Both species displayed similar ontogenic diet shifts with smaller trout consuming mostly invertebrates and larger trout being more piscivorous and epibenthic feeders. However, piscivory was more prevalent in brown trout than in rainbow trout and highest at the site with the greatest density of native fishes suggesting that the availability of native fishes as trout prey may limit the occurrence of trout piscivory. We found an elevated dietary overlap between the two trout species at larger sizes while at smaller size a higher intraspecific dietary overlap occurred suggesting a potential interference competition among the two fish invaders especially at larger sizes. Our results highlight that the impacts of invading species on non‐native fishes are context specific (i.e. species and ontogenic stages) and thus, difficult to generalize.  相似文献   

8.
Secondary compounds can contribute to the success of non‐native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary compounds of non‐native plant species are stronger than those of natives. This may be explained by other factors, besides plant origin, that affect the potential of plant secondary compounds. We tested how plant origin, phylogeny, growth strategy and stoichiometry affected the allelopathic potential of 34 aquatic plants. The allelopathic potential was quantified using bioassays with the cyanobacterium Dolichospermum flos‐aquae. The allelopathic potential showed a strong phylogenetic signal, but was similar for native and non‐native species. Growth strategy was important, and emergent plants had twice the allelopathic potential as compared to submerged plants. Furthermore, the allelopathic potential was positively correlated to the foliar carbon‐to‐phosphorus (C:P) and total phenolic content. We conclude that eudicot plant species with an emergent growth strategy and high plant C:P ratio exhibit a high allelopathic potential. Unless non‐native plant species match this profile, they generally have a similar allelopathic potential as natives.  相似文献   

9.
10.
11.
European grapevine populations quickly disappeared from most of their range, massively killed by the spread of North American grapevine pests and diseases. Nowadays taxonomic pollution represents a new threat. A large Vitis complex involves escaped cultivars, rootstocks, and wild grapevines. The study aimed to provide insight into the Vitis complex in the Danube region through field and genetic analyses. Among the five other major rivers in Europe which still host wild grapevine populations, the Danube floodplain is the only one benefiting from an extensive protected forest area (93 km²) and an relatively active dynamic flood pulse. The Donau‐Auen National Park also regroups the largest wild grapevine population in Europe. Ninety‐two percent of the individuals collected in the park were true wild grapevines, and 8% were hybrids and introgressed individuals of rootstocks, wild grapevines, and cultivars. These three groups are interfertile acting either as pollen donor or receiver. Hybrids were established within and outside the dykes, mostly in anthropized forest edges. The best‐developed individuals imply rootstock genes. They establish in the most erosive parts of the floodplain. 42% of the true wild grapevines lived at the edges of forest/meadow, 33.3% at the edges forest/channels, and 23.9% in forest gaps. DBH (Diameter Breast Height) varied significantly with the occurrence of flooding. Clones were found in both true wild and hybrids/introgressed grapevines. The process of cloning seemed to be prevented in places where flooding dynamics is reduced. The current global distribution of true wild grapevines shows a strong tendency toward clustering, in sites where forestry practices were the most extensive. However, the reduced flooding activity is a danger for long‐term sustainability of the natural wild grapevine population.  相似文献   

12.
Southern Africa has a long history of non‐native fish introductions for the enhancement of recreational and commercial fisheries, due to a perceived lack of suitable native species. This has resulted in some important inland fisheries being based on non‐native fishes. Regionally, these introductions are predominantly not benign, and non‐native fishes are considered one of the main threats to aquatic biodiversity because they affect native biota through predation, competition, habitat alteration, disease transfer and hybridization. To achieve national policy objectives of economic development, food security and poverty eradication, countries are increasingly looking towards inland fisheries as vehicles for development. As a result, conflicts have developed between economic and conservation objectives. In South Africa, as is the case for other invasive biota, the control and management of non‐native fishes is included in the National Environmental Management: Biodiversity Act. Implementation measures include import and movement controls and, more recently, non‐native fish eradication in conservation priority areas. Management actions are, however, complicated because many non‐native fishes are important components in recreational and subsistence fisheries that contribute towards regional economies and food security. In other southern African countries, little attention has focussed on issues and management of non‐native fishes, and this is cause for concern. This paper provides an overview of introductions, impacts and fisheries in southern Africa with emphasis on existing and evolving legislation, conflicts, implementation strategies and the sometimes innovative approaches that have been used to prioritize conservation areas and manage non‐native fishes.  相似文献   

13.
Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non‐native species co‐occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co‐occurring native Juncus pallidus and non‐native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above‐ and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non‐native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non‐native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non‐native linking the coevolved tolerance of those.  相似文献   

14.
15.
16.
Zoufal  Wolfgang 《Hydrobiologia》1989,(1):163-165
The relationship between temperature and development time of Synchaeta oblonga eggs from the Danube was investigated. Growth rates were also measured in populations established from the Danube.  相似文献   

17.
18.
The prospective rise in atmospheric CO2 and temperature may change the distribution and invasive potential of a species; and intraspecific invasive lineages may respond differently to climate change. In this study, we simulated a future climate scenario with simultaneously elevated atmospheric CO2 and temperature, and investigated its interaction with soil salinity, to assess the effects of global change on the ecophysiology of two competing haplotypes of the wetland grass Phragmites australis, that are invasive in the coastal marshes of North America. The two haplotypes with the phenotypes ‘EU‐type’ (Eurasian haplotype) and ‘Delta‐type’ (Mediterranean haplotype), were grown at 0‰ and 20‰ soil salinity, and at ambient or elevated climatic conditions (700 ppm CO2, +5 °C) in a phytotron system. The aboveground growth of both phenotypes was highest at the elevated climatic conditions. Growth at 20‰ salinity resulted in declined aboveground growth, lower transpiration rates (E), stomata conductance (gs), specific leaf area, photosynthetic pigment concentrations, and a reduced photosynthetic performance. The negative effects of salinity were, however, significantly less severe at elevated CO2 and temperature than at the ambient climatic conditions. The Delta‐type P. australis had higher shoot elongation rates than the EU‐type P. australis, particularly at high salinity. The Delta‐type also had higher maximum light‐saturated rates of photosynthesis (Asat), maximum carboxylation rates of Rubisco (Vcmax), maximum electron transport rates (Jmax), triose phosphate utilization rates (Tp), stomata conductance (gs), as well as higher Rubisco carboxylation‐limited, RuBP regeneration‐limited and Tp‐regeneration limited CO2 assimilation rates than the EU‐type under all growth conditions. Our results suggest that the EU‐type will not become dominant over the Delta‐type, since the Delta‐type has superior ecophysiological traits. However, the projected rise in atmospheric CO2 and temperature will alleviate the effects of salinity on both phenotypes and facilitate their expansion into more saline areas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号