共查询到20条相似文献,搜索用时 15 毫秒
1.
- Small or sparse populations can experience Allee effects if egg fertilisation is reduced because of a shortage of sperm.
- Freshwater mussels are spermcasters that often occur as sparse, patchy populations. Previous studies suggested that sperm shortage limits these populations unless facultative hermaphroditism and self‐fertilisation occur at low density. We conducted experiments in ponds to examine fertilisation in the mussel, Lampsilis straminea, in response to flow, presence of and distance from males, male density, and the presence of upstream females that could compete for sperm with downstream females.
- Self‐fertilisation in the absence of males did not occur in either experiment. Female fertilisation success was uniformly high in most treatments and was not related to flow or distance from males (1–25 m). Fertilisation success was significantly lower at low male density (0.02 m?2, compared with 0.16 m?2) but remained relatively high even in most low male density treatments. The proportion of females that became gravid was higher in the presence of upstream females, but fecundity was significantly lower when upstream females were present; these conflicting results made it difficult to assess the role of competition among females for sperm.
- Overall, high fertilisation success occurred at densities three orders of magnitude lower than previously proposed thresholds for mussels. Sperm dispersal and acquisition and egg fertilisation appear to be complex processes associated with adaptations for spermcasting. These adaptations are likely to facilitate persistence at low population density and buffer mussels from reproductive Allee effects.
2.
3.
随着全球环境破坏的加剧,物种丧失的速度加快,人们日益关注生物多样性的保护。种群生物学和自然保护生物学的一些研究表明,如果一个局域种群受到Allee效应的影响,最终可能走向灭绝。从物种保护的角度考虑,分别介绍了集合种群水平上的Allee效应的和似Allee效应,比较了集合种群的Allee效应和似Allee效应产生的原因,以及集合种群的Allee效应和局域种群的Allee效应之间的关系、集合种群的似Allee效应和局域种群的Allee效应之间的关系,并提出集合种群的Allee效应还需要进一步的研究。 相似文献
4.
集合种群的似Allee效应 总被引:4,自引:0,他引:4
从局域种群出发,建立了一个既包括局域种群动态,又包含集合种群侵占率的整合模型,并在这两个层次上进行了计算机模拟,结果表明:(1)同局域种群的Allee效应相类似,集合种群的斑块(适宜生境)侵占比例也存在一个临界值,即使有足够的适宜生境,当斑块的侵占比例低于这个临界值时,集合种群优将趋于灭绝。(2)这个临界值与局域种各的Allee效应密切相关,这将给自然保护,尤其稀有生物的保护以很大的启示。 相似文献
5.
《Journal of biological dynamics》2013,7(4):409-427
We propose a discrete-time, age-structured population model to study the impact of Allee effects and harvesting. It is assumed that survival probabilities from one age class to the next are constants and fertility rate is a function of weighted total population size. Global extinction is certain if the maximal growth rate of the population is less than one. The model can have multiple attractors and the asymptotic dynamics of the population depend on its initial distribution if the maximal growth rate is larger than one. An Allee threshold depending on the components of the unstable interior equilibrium is derived when only the last age class can reproduce. The population becomes extinct if its initial population distribution is below the threshold. Harvesting on any particular age class can decrease the magnitude of the possible stable interior equilibrium and increase the magnitude of the unstable interior equilibrium simultaneously. 相似文献
6.
William Mattson Henri Vanhanen Timo Veteli Sanna Sivonen Pekka Niemelä 《Biological invasions》2007,9(8):957-974
Exotic phytophagous insects are invading forest ecosystems worldwide. So far, 109 invasive insects on woody plants, 57 from
North American (NA), and 52 from Asia (A) have established populations in European forests. Four orders account for about
84% of the immigrants: Homoptera 39%, Lepidoptera 13%, Coleoptera 19%, and Hymenoptera 13%. The majority of these invasive
species (63% of NA and 77% of A) live on deciduous trees, of which 36% have been introduced from NA and Asia. The remaining
insect species (37% NA and 25% A) live on various conifers, of which 53% have also been introduced. Most (57%) of the NA insects
feeding on coniferous plants live upon their introduced, native host plants. These data suggest that many NA immigrant phytophagous
species in Europe have been successful in establishing permanent populations because their native hosts preceded or accompanied
them into Europe and/or were asexually reproducing species. We propose that fewer invasive phytophagous insects have become
established in European compared to North American woodlands because of the unique legacy of the European Pleistocene/Holocene
crucible (i.e. endless cycles of populations contracting into highly disparate, dispersed metapopulation refugia and eventually
expanding out of them) on European species and ecosystems that caused highly diminished heterogeneity. This translates to
fewer and less penetrable tri-trophic niches in Europe due to fewer and less available host plants, but greater zootic resistance
per niche derived from more competition-hardened competitors and possibly natural enemies. Moreover, many European species
are probably superior invasion specialists because the crucible favored traits that are conducive to success in highly subdivided,
and extinction-prone metapopulations: asexual reproduction, polyploidy, and other traits especially conducive to persistence
under stress, and explosive growth/spread under amelioration. 相似文献
7.
In the interest of conservation, the importance of having a large habitat available for a species is widely known. Here, we introduce a lattice-based model for a population and look at the importance of fluctuations as well as that of the population density, particularly with respect to Allee effects. We examine the model analytically and by Monte Carlo simulations and find that, while the size of the habitat is important, there exists a critical population density below which the probability of extinction is greatly increased. This has large consequences with respect to conservation, especially in the design of habitats and for populations whose density has become small. In particular, we find that the probability of survival for small populations can be increased by a reduction in the size of the habitat and show that there exists an optimal size reduction. 相似文献
8.
Studies on small and declining populations dominate research in conservation biology. This emphasis reflects two overarching frameworks: the small-population paradigm focuses on correlates of increased extinction probability; the declining-population paradigm directs attention to the causes and consequences of depletion. Neither, however, particularly informs research on the determinants, rate or uncertainty of population increase. By contrast, Allee effects (positive associations between population size and realized per capita population growth rate, rrealized, a metric of average individual fitness) offer a theoretical and empirical basis for identifying numerical and temporal thresholds at which recovery is unlikely or uncertain. Following a critique of studies on Allee effects, I quantify population-size minima and subsequent trajectories of marine fishes that have and have not recovered following threat mitigation. The data suggest that threat amelioration, albeit necessary, can be insufficient to effect recovery for populations depleted to less than 10% of maximum abundance (Nmax), especially when they remain depleted for lengthy periods of time. Comparing terrestrial and aquatic vertebrates, life-history analyses suggest that population-size thresholds for impaired recovery are likely to be comparatively low for marine fishes but high for marine mammals. Articulation of a ‘recovering population paradigm’ would seem warranted. It might stimulate concerted efforts to identify generic impaired recovery thresholds across species. It might also serve to reduce the confusion of terminology, and the conflation of causes and consequences with patterns currently evident in the literature on Allee effects, thus strengthening communication among researchers and enhancing the practical utility of recovery-oriented research to conservation practitioners and resource managers. 相似文献
9.
《Journal of biological dynamics》2013,7(2):941-958
We describe the dynamics of an evolutionary model for a population subject to a strong Allee effect. The model assumes that the carrying capacity k(u), inherent growth rate r(u), and Allee threshold a(u) are functions of a mean phenotypic trait u subject to evolution. The model is a plane autonomous system that describes the coupled population and mean trait dynamics. We show bounded orbits equilibrate and that the Allee basin shrinks (and can even disappear) as a result of evolution. We also show that stable non-extinction equilibria occur at the local maxima of k(u) and that stable extinction equilibria occur at local minima of r(u). We give examples that illustrate these results and demonstrate other consequences of an Allee threshold in an evolutionary setting. These include the existence of multiple evolutionarily stable, non-extinction equilibria, and the possibility of evolving to a non-evolutionary stable strategy (ESS) trait from an initial trait near an ESS. 相似文献
10.
In spite of increasing interest in metapopulation dynamics, the genetic consequences of a metapopulation structure remain poorly understood. Here we examine the metapopulation genetic structure of the colonial, facultatively sexual freshwater bryozoan Cristatella mucedo , in the Thames basin of southern England, UK. Populations from nine sites were sampled and colonies genetically characterized using random amplified polymorphic DNA (RAPD)–PCR. A total of 78 different clones was detected over all sites. Despite the large number of clones, genetic distances among clones both within and among sites were very small. Nonetheless, no clone was present at more than one site even though C. mucedo has an asexual dispersal propagule, and clones strongly clustered by sites. No consistent pattern of clonal structure was evident, with both the number and equitability of clones varying greatly among sites. Although sites were genetically distinct, population genetic regions were absent, and a Mantel test indicated that there was no relationship between geographical distances among sites and genetic distances among populations. Our results indicate that C. mucedo exists as a classical metapopulation in the Thames basin, with dispersal independent of distance and all sites contributing to the genetic diversity of the metapopulation. 相似文献
11.
12.
13.
《Journal of biological dynamics》2013,7(1):57-73
In nonlinear matrix models, strong Allee effects typically arise when the fundamental bifurcation of positive equilibria from the extinction equilibrium at r=1 (or R0=1) is backward. This occurs when positive feedback (component Allee) effects are dominant at low densities and negative feedback effects are dominant at high densities. This scenario allows population survival when r (or equivalently R0) is less than 1, provided population densities are sufficiently high. For r>1 (or equivalently R0>1) the extinction equilibrium is unstable and a strong Allee effect cannot occur. We give criteria sufficient for a strong Allee effect to occur in a general nonlinear matrix model. A juvenile–adult example model illustrates the criteria as well as some other possible phenomena concerning strong Allee effects (such as positive cycles instead of equilibria). 相似文献
14.
15.
Individual organisms often show pronounced changes in body size throughout life with concomitant changes in ecological performance. We synthesize recent insight into the relationship between size dependence in individual life history and population dynamics. Most studies have focused on size‐dependent life‐history traits and population size‐structure in the highest trophic level, which generally leads to population cycles with a period equal to the juvenile delay. These cycles are driven by differences in competitiveness of differently sized individuals. In multi‐trophic systems, size dependence in life‐history traits at lower trophic levels may have consequences for both the dynamics and structure of communities, as size‐selective predation may lead to the occurrence of emergent Allee effects and the stabilization of predator–prey cycles. These consequences are linked to that individual development is density dependent. We conjecture that especially this population feedback on individual development may lead to new theoretical insight compared to theory based on unstructured or age‐dependent models. Density‐dependent individual development may also cause individuals to realize radically different life histories, dependent on the state and dynamics of the population during their life and may therefore have consequences for individual behaviour or the evolution of life‐history traits as well. 相似文献
16.
17.
Gitta Szabo Sarah P Preheim Kathryn M Kauffman Lawrence A David Jesse Shapiro Eric J Alm Martin F Polz 《The ISME journal》2013,7(3):509-519
How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics. 相似文献
18.
Joanna Gascoigne Ludek Berec Stephen Gregory Franck Courchamp 《Population Ecology》2009,51(3):355-372
In this paper, we review mate-finding Allee effects from ecological and evolutionary points of view. We define ‘mate-finding’ as mate searching in mobile animals, and also as the meeting of gametes for sessile animals and plants (pollination). We consider related issues such as mate quality and choice, sperm limitation and physiological stimulation of reproduction by conspecifics, as well as discussing the role of demographic stochasticity in generating mate-finding Allee effects. We consider the role of component Allee effects due to mate-finding in generating demographic Allee effects (at the population level). Compelling evidence for demographic Allee effects due to mate-finding (as well as via other mechanisms) is still limited, due to difficulties in censusing rare populations or a failure to identify underlying mechanisms, but also because of fitness trade-offs, population spatial structure and metapopulation dynamics, and because the strength of component Allee effects may vary in time and space. Mate-finding Allee effects act on individual fitness and are thus susceptible to change via natural selection. We believe it is useful to distinguish two routes by which evolution can act to mitigate mate-finding Allee effects. The first is evolution of characteristics such as calls, pheromones, hermaphroditism, etc. which make mate-finding more efficient at low density, thus eliminating the Allee effect. Such adaptations are very abundant in the natural world, and may have arisen to avoid Allee effects, although other hypotheses are also possible. The second route is to avoid low density via adaptations such as permanent or periodic aggregation. In this case, the Allee effect is still present, but its effects are avoided. These two strategies may have different consequences in a world where many populations are being artificially reduced to low density: in the first case, population growth rate can be maintained, while in the second case, the mechanism to avoid Allee effects has been destroyed. It is therefore in these latter populations that we predict the greatest evidence for mate-finding Allee effects and associated demographic consequences. This idea is supported by the existing empirical evidence for demographic Allee effects. Given a strong effect that mate-finding appears to have on individual fitness, we support the continuing quest to find connections between component mate-finding Allee effects (individual reproductive fitness) and the demographic consequences. There are many reasons why such studies are difficult, but it is important, particularly given the increasing number of populations and species of conservation concern, that the ecological community understands more about how widespread demographic Allee effects really are, and why. 相似文献
19.
Valentina Franco‐Trecu Massimiliano Drago Claudia Baladán Mateo D. García‐Olazábal Enrique A. Crespo Luis Cardona Pablo Inchausti 《Marine Mammal Science》2015,31(3):963-978
Many pinniped populations precipitously declined during the 19th and 20th centuries due to overharvesting. In Uruguay, the South American sea lion (SASL) was harvested until 1986. Birth rates in two nearby breeding colonies have had opposite trends for at least 20 yr. We assessed different mechanisms that could explain opposite trends in birth rates in the two SASL colonies. We compared feeding habits (δ15N and δ13C) of breeding females, birth mass, individual growth rate and early survival of pups and the social structure between colonies. Breeding females from the two colonies did not differ in their feeding habits. However, male and female pups grew faster but had a lower survival in the second month in the smallest colony. We found differences in the social structures, with a higher proportion of males in the smallest colony. The latter is important because peripheral SASL males may abduct and kill pups, which may explain the lower survival of pups in smaller colonies. We believe that the cumulative effects of population extractions have lowered the local SASL population size and disrupted its social structure to the point where Allee‐like effects could become important and hamper the recovery of the Uruguayan SASL population. 相似文献
20.