首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically‐relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β‐lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi‐functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly‐active exemplars usually found in textbooks. Instead, primordial‐like enzymes may be an essential part of the adaptive strategy associated with streamlining.  相似文献   

2.
Wild birds have been suggested to be reservoirs of antimicrobial resistant and/or pathogenic Enterococcus faecalis (Efs) strains, but the scarcity of studies and available sequences limit our understanding of the population structure of the species in these hosts. Here, we analysed the clonal and plasmid diversity of 97 Efs isolates from wild migratory birds. We found a high diversity, with most sequence types (STs) being firstly described here, while others were found in other hosts including some predominant in poultry. We found that pheromone-responsive plasmids predominate in wild bird Efs while 35% of the isolates entirely lack plasmids. Then, to better understand the ecology of the species, the whole genome of fivestrains with known STs (ST82, ST170, ST16 and ST55) were sequenced and compared with all the Efs genomes available in public databases. Using several methods to analyse core and accessory genomes (AccNET, PLACNET, hierBAPS and PANINI), we detected differences in the accessory genome of some lineages (e.g. ST82) demonstrating specific associations with birds. Conversely, the genomes of other Efs lineages exhibited divergence in core and accessory genomes, reflecting different adaptive trajectories in various hosts. This pangenome divergence, horizontal gene transfer events and occasional epidemic peaks could explain the population structure of the species.  相似文献   

3.
Minisatellites, a class of variable number tandem repeats (VNTRs), are abundant throughout the control region in animal mitochondrial DNA (mtDNA) but rare in other regions of animal mtDNA. Here, we reported a novel minisatellite in fish mitochondrial genomes. We first determined the complete mitochondrial genomes of two schizothoracine fishes (Herzensteinia microcephalus and Schizopygopsis pylzovi) and found a type of minisatellites in a novel region between the tRNA‐Thr and tRNA‐Pro genes in their mtDNA. To explore the origin and evolution of the minisatellites in different schizothoracine and closely related fishes, we analyzed the available 80 fish mitogenomes which represent five closely related tribes of cyprinine fishes. The results from the phylogenetic analyses show that the schizothoracine fishes sensu stricto is not a monophyletic group and is divided into two clades (Schizothoracini and Schizopygopsini); and the minisatellite is only present in Schizopygopsini distributed in the region between the two tRNA genes (tRNA‐Thr and tRNA‐Pro) of the mtDNA. This is the first record of a minisatellite in a non‐control region of fish mitogenome.  相似文献   

4.
Caste evolution is a central process in the adaptive diversification of insect superorganisms. Nevertheless, how ecology shapes adaptive caste evolution remains poorly understood. Recent work with the ant genus Cephalotes has provided new comparative evidence that ecological specialization may drive adaptive caste specialization. Here, three key predictions of this adaptive hypothesis are supported, using a representative of the highest level of ecological specialization and the most specialized soldier phenotype. First, soldier defensive performance was maximal for the specific nesting resource used most often in nature. Second, colonies only used a specialized subset of available nesting resources and preferred the specific resource that maximizes soldier performance. Third, soldier performance and its limitations on resource use were found to have both direct and indirect consequences for colony reproduction. These findings suggest that the most specialized soldier phenotype in Cephalotes is indeed an adaptation to ecological specialization on a narrowly defined subset of available nesting resources.  相似文献   

5.
Stano M  Klucar L 《Genomics》2011,98(5):376-380
phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics.  相似文献   

6.
Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow‐winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non‐Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits.  相似文献   

7.
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome‐wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single‐copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high‐quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome‐wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.  相似文献   

8.
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.  相似文献   

9.
Chromosomal inversions are important structural changes that may facilitate divergent selection when they capture co‐adaptive loci in the face of gene flow. However, identifying selection targets within inversions can be challenging. The high degrees of differentiation between heterokaryotypes, as well as the differences in demographic histories of collinear regions compared with inverted ones, reduce the power of traditional outlier analyses for detecting selected loci. Here, we develop a new approach that uses discriminant functions informed from inversion‐specific expectations to classify loci that are under selection (or drift). Analysis of RAD sequencing data we collected in a classic dipteran species with polymorphic inversion clines—Anopheles gambiae, a malaria vector species from sub‐Saharan Africa—demonstrates the benefits of the approach compared with traditional outlier analyses. We focus specifically on two polymorphic inversions, the 2La and 2Rb arrangements that predominate in dry habitats and the 2L+a and 2R+b arrangements in wet habitats, which contrast with the minimal geographic structure of SNPs from collinear regions. With our approach, we identify two strongly selected regions within 2La associated with dry habitat. Moreover, we also show that the prevalence of selection is greater in the arrangement 2L+a that is associated with wet habitat (unlike presumed importance of selective divergence associated with the shift of the mosquitoes into dry habitats). We discuss the implications of these results with respect to studies of rapid adaptation in these malaria vectors, and in particular, the insights our newly developed approach offers for identifying not only potential targets of selection, but also the population that has undergone adaptive change.  相似文献   

10.
Gerardo NM  Wilson AC 《Molecular ecology》2011,20(10):2038-2040
Species interactions are fundamental to ecology. Classic studies of competition, predation, parasitism and mutualism between macroscopic organisms have provided a foundation for the discipline, but many of the most important and intimate ecological interactions are microscopic in scale. These microscopic interactions include those occurring between eukaryotic hosts and their microbial symbionts. Such symbioses, ubiquitous in nature, provide experimental challenges because the partners often cannot live outside the symbiosis. With respect to the symbionts, this precludes utilizing classical microbiological and genetic techniques that require in vitro cultivation. Genomics, however, has rapidly changed the study of symbioses. In this issue of Molecular Ecology, MacDonald et al. (2011) , coupling symbiont whole‐genome sequencing, experimental studies and metabolic modelling, provide novel insights into one of the best‐studied symbioses, that between aphids and their obligate, nutrient‐provisioning, intracellular bacteria, Buchnera aphidicola ( Fig. 1 ). MacDonald and colleagues assessed variation in the ability of aphid–Buchnera pairs to thrive on artificial diets missing different amino acids. As shown previously (e.g. Wilkinson & Douglas 2003 ), aphid–Buchnera pairs can differ in their requirements for external sources of essential amino acids. Such phenotypic variation could result from differences in Buchnera’s amino acid biosynthetic capabilities or in the ability of aphids to interact with their symbionts. Whole‐genome sequencing of the Buchnera genomes from four aphid lines with alternate nutritional phenotypes revealed that the environmental nutrients required by the aphid–Buchnera pairs could not be explained by sequence variation in the symbionts. Instead, a novel metabolic modelling approach suggested that much of the variation in nutritional phenotype could be explained by host variation in the capacity to provide necessary nutrient precursors to their symbionts. MacDonald et al.’s work complements a recent study by Vogel & Moran (2011) , who through crossing experiments investigating the inheritance of a nutritional phenotype associated with a frameshift mutation in a Buchnera amino acid biosynthesis gene powerfully demonstrated that different host genotypes paired with the same symbiont genome could exhibit substantially different nutritional requirements. 2 Thus, while there is little doubt that Buchnera are evolutionarily central to the nutritional ecology of aphids, the current work by MacDonald et al. (2011) together with that of Vogel & Moran (2011) surprisingly demonstrates host dominance in defining and controlling the ecological niche of this particular symbiosis.
Figure 1 Open in figure viewer PowerPoint Pea aphids and their bacterial symbionts. (a) A pea aphid mother and her clonal offspring. (b) Flourescence In Situ Hybridization (FISH) microscopy reveals the intimate association of aphid tissues (blue) with their obligate bacterial symbiont, Buchnera aphidicola (green), and a common facultative bacterial symbiont, Hamiltonella defensa (red). Photo by T. Barribeau, FISH image provided by A. Douglas.  相似文献   

11.
We have created a DNA construct, TREGED (transposon-and recombinase-mediated genome deletion), that will automatically induce deletions in plant genomes. TREGED contains the maizeAc/Ds transposon, the yeast R-RS site-specific recombination system, the bacterialtetR repression systems, a novel artificial superintron, and the marker genesGUS andLc. The novelty of TREGED is that only one cross is required to trigger a sequence of events leading to deletion and, simultaneously, to a color assay to detect the deletion. Crossing is done to introduceAc transposase which activatesDs transposition from TREGED to a nearby chromosome region.Ds transposition, in turn, activates recombination between an engineeredRS site on TREGED and anRS site on the transposedDs fragment, thus deleting the genome segment between TREGED andDs. The recombination event also deletesLc orGUS and part oftetR, which triggers expression ofGUS orLc color genes for an upstream or downstream deletion respectively. Each TREGED insertion site will produce multiple kinds of deletions identifiable by inspecting a single F1 plant and its progeny for colored tissue. The color markers can also be used to differentiate between deletion and other more rare events such as translocation and inversion. We anticipate TREGED will greatly simplify the steps required to obtain useful deletions—eventually allowing the creation of detailed deletion libraries. Such libraries will be particularly useful for anlaysis of gene and chromatin function in plant species with large genomes.  相似文献   

12.
Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 21 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.This paper is dedicated to the memory of the late Ernest R. SearsCooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper No. 3986  相似文献   

13.
14.
Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes   总被引:30,自引:1,他引:29  
Summary The dinucleotide CpG is a hotspot for mutation in the human genome as a result of (1) the modification of the 5 cytosine by cellular DNA methyltransferases and (2) the consequent high frequency of spontaneous deamination of 5-methyl cytosine (5mC) to thymidine. DNA methylation thus contributes significantly, albeit indirectly, to the incidence of human genetic disease. We have attempted to estimate for the first time the in vivo rate of deamination of 5mC from the measured rate of 5mC deamination in vitro and the known error frequency of the cellular G/T mismatch-repair system. The accuracy and utility of this estimate (m d ) was then assessed by comparison with clinical data, and an improved estimate of m d (1.66x10-16 s-1) was derived. Comparison of the CpG mutation rates exibited by globin gene and pseudogene sequences from human, chimpanzee and macaque provided further estimates of m d , all of which were consistent with the first. Use of this value in a mathematical model then permitted the estimation of the length of time required to produce the level of CpG suppression currently found in the bulk DNA of vertebrate genomes. This time span, approximately 450 million years, corresponds closely to the estimated time since the emergence and adaptive radiation of the vertebrates and thus coincides with the probable advent of heavily methylated genomes. An accurate estimate of the 5mC deamination rate is important not only for clinical medicine but also for studies of gene evolution. Our data suggest both that patterns of vertebrate gene methylation may be comparatively stable over relatively long periods of evolutionary time, and that the rate of CpG deamination can, under certain limited conditions, serve as a molecular clock.  相似文献   

15.
Barcodes for genomes and applications   总被引:1,自引:0,他引:1  

Background  

Each genome has a stable distribution of the combined frequency for each k-mer and its reverse complement measured in sequence fragments as short as 1000 bps across the whole genome, for 1<k<6. The collection of these k-mer frequency distributions is unique to each genome and termed the genome's barcode.  相似文献   

16.
We determined the complete nucleotide sequences of the mitochondrial genomes for the three currently recognized species of ocean sunfish: Mola mola, Masturus lanceolatus, and Ranzania laevis (Tetraodontiformes: Molidae). Each genome contained the 37 genes as found in teleosts, with the typical gene order in teleosts. Bayesian, maximum-likelihood, and maximum-parsimony analyses were conducted with the data set comprising concatenated nucleotide sequences from 36 genes (excluding the ND6 gene) of three molids and four outgroups (three tetraodontiforms plus a caproid). The resultant trees supported monophyly of the Molidae and its intrarelationships ((Mola, Masturus), Ranzania), which were congruent with previous morphology-based hypotheses.  相似文献   

17.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

18.
Retroelements represent a considerable fraction of many eukaryotic genomes and are considered major drives for adaptive genetic innovations. Recent discoveries showed that despite not normally using DNA intermediates like retroviruses do, Mononegaviruses (i.e., viruses with nonsegmented, negative-sense RNA genomes) can integrate gene fragments into the genomes of their hosts. This was shown for Bornaviridae and Filoviridae, the sequences of which have been found integrated into the germ line cells of many vertebrate hosts. Here, we show that Rhabdoviridae sequences, the major Mononegavirales family, have integrated only into the genomes of arthropod species. We identified 185 integrated rhabdoviral elements (IREs) coding for nucleoproteins, glycoproteins, or RNA-dependent RNA polymerases; they were mostly found in the genomes of the mosquito Aedes aegypti and the blacklegged tick Ixodes scapularis. Phylogenetic analyses showed that most IREs in A. aegypti derived from multiple independent integration events. Since RNA viruses are submitted to much higher substitution rates as compared with their hosts, IREs thus represent fossil traces of the diversity of extinct Rhabdoviruses. Furthermore, analyses of orthologous IREs in A. aegypti field mosquitoes sampled worldwide identified an integrated polymerase IRE fragment that appeared under purifying selection within several million years, which supports a functional role in the host's biology. These results show that A. aegypti was subjected to repeated Rhabdovirus infectious episodes during its evolution history, which led to the accumulation of many integrated sequences. They also suggest that like retroviruses, integrated rhabdoviral sequences may participate actively in the evolution of their hosts.  相似文献   

19.
Wolbachia pipientis is one of the most widely studied endosymbionts today, yet we know little about its short‐term adaptation and evolution. Here, using a set of 91 inbred Drosophila melanogaster lines from five populations, we explore patterns of diversity and recent evolution in the Wolbachia strain wMel. Within the D. melanogaster lines, we identify six major mitochondrial clades and four wMel clades. Concordant with past studies, the Wolbachia haplotypes contain an overall low level of nucleotide diversity, yet they still display geographic structuring. Using Bayesian analysis informed with demographic estimates of colonization times, we estimate that all extant D. melanogaster mitochondrial haplotypes coalesce to a Wolbachia‐infected ancestor approximately 2200 years ago. Finally, we measure wMel titre within the infected flies and find that titre varies across populations, an effect attributable to host genetic factors. This demonstration of local phenotypic divergence suggests that intraspecific host genetic variation plays a key role in shaping this model symbiotic system.  相似文献   

20.

Background  

Across all sequenced bacterial genomes, the number of domains n c in different functional categories c scales as a power-law in the total number of domains n, i.e. , with exponents α c that vary across functional categories. Here we investigate the implications of these scaling laws for the evolution of domain-content in bacterial genomes and derive the simplest evolutionary model consistent with these scaling laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号