首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   

2.
Effects of water deficit on photosynthetic capacity   总被引:11,自引:0,他引:11  
Under drought, CO2 assimilation rates decrease already at small leaf water deficits. At least part of the inhibition is attributed to non-stomata1 effects at the chloroplast level, with electron transport and phosphorylation being main targets of inhibition. These findings are questioned by direct measurements of photosynthetic capacity with systems that are not Limited by stomata, e.g. leaf slices in solution or leaves at ex-ternal CO2 concentrations exceeding 5%. Here, photosynthesis was rather insensitive to dehydration down to 50–70% relative water content, and different plant species re-sponded in a very similar way. More severe dehydration affected not only pboto-synthesis, but also dark CO2 fixation and presumably also photorespiration. Rever-sible and unspecific inhibition is thought to be mediated mainly by increased concen-trations of solutes in dehydrated cells. Inhibition of photorespiration might favour photoinhibition when long-term water stress is coupled with full sunlight. Photo-inhibition, together with general senescence phenomena might be involved in long-term effects of water stress under natural drought conditions. This offers an explanation for the conflicting results of short-term water stress experiments and studies carried out under field conditions.  相似文献   

3.
Abstract We measured the plasticity of the response of photosynthesis to nutrient supply in seedlings of the dominant four conifer and broadleaved angiosperm tree species from an indigenous forest in South‐westland, New Zealand. We hypothesized that the response of conifers to differing nutrient supply would be less than the response for the angiosperms because of greater adaptation to low fertility conditions. In Prumnopitys ferruginea (D. Don) de Laub. the maximum velocity of electron transport, Jmax, doubled with a 10‐fold increase in concentration of nitrogen supply. In Dacrydium cupressinum Lamb. the maximum velocity of carboxylation, Vcmax, doubled with a 10‐fold increase in phosphorus supply. In contrast, photosynthetic capacity for the angiosperm species Weinmannia racemosa L.f. was affected only by the interaction of nitrogen and phosphorus and photosynthetic capacity of Metrosideros umbellata Cav. was not affected by nutrient supply. The response of the conifers to increasing availability of nutrient suggests greater plasticity in photosynthetic capacity, a characteristic not generally associated with adaptation to soil infertility, thus invalidating our hypothesis. Our data suggest that photosynthetic response to nutrient supply cannot be broadly generalized between the two functional groups.  相似文献   

4.
The present study was undertaken to test for the hypothesis that the rate of development in the capacity for photosynthetic electron transport per unit area (Jmax;A), and maximum carboxylase activity of Rubisco (Vcmax;A) is proportional to average integrated daily quantum flux density (Qint) in a mixed deciduous forest dominated by the shade‐intolerant species Populus tremula L., and the shade‐tolerant species Tilia cordata Mill. We distinguished between the age‐dependent changes in net assimilation rates due to modifications in leaf dry mass per unit area (MA), foliar nitrogen content per unit dry mass (NM), and fractional partitioning of foliar nitrogen in the proteins of photosynthetic electron transport (FB), Rubisco (FR) and in light‐harvesting chlorophyll‐protein complexes (Vcmax;AMANMFR; Jmax;AMANMFB). In both species, increases in Jmax;A and Vcmax;A during leaf development were primarily determined by nitrogen allocation to growing leaves, increases in leaf nitrogen partitioning in photosynthetic machinery, and increases in MA. Canopy differences in the rate of development of leaf photosynthetic capacity were mainly controlled by the rate of change in MA. There was only small within‐canopy variation in the initial rate of biomass accumulation per unit Qint (slope of MA versus leaf age relationship per unit Qint), suggesting that canopy differences in the rate of development of Jmax;A and Vcmax;A are directly proportional to Qint. Nevertheless, MA, nitrogen, Jmax;A and Vcmax;A of mature leaves were not proportional to Qint because of a finite MA in leaves immediately after bud‐burst (light‐independent component of MA). MA, leaf chlorophyll contents and chlorophyll : N ratio of mature leaves were best correlated with the integrated average quantum flux density during leaf development, suggesting that foliar photosynthetic apparatus, once developed, is not affected by day‐to‐day fluctuations in Qint. However, for the upper canopy leaves of P. tremula and for the entire canopy of T. cordata, there was a continuous decline in N contents per unit dry mass in mature non‐senescent leaves on the order of 15–20% for a change of leaf age from 40 to 120 d, possibly manifesting nitrogen reallocation to bud formation. The decline in N contents led to similar decreases in leaf photosynthetic capacity and foliar chlorophyll contents. These data demonstrate that light‐dependent variation in the rate of developmental changes in MA determines canopy differences in photosynthetic capacity, whereas foliar photosynthetic apparatus is essentially constant in fully developed leaves.  相似文献   

5.
Plant respiration is an important contributor to the proposed positive global carbon‐cycle feedback to climate change. However, as a major component, leaf mitochondrial (‘dark’) respiration (Rd) differs among species adapted to contrasting environments and is known to acclimate to sustained changes in temperature. No accepted theory explains these phenomena or predicts its magnitude. Here we propose that the acclimation of Rd follows an optimal behaviour related to the need to maintain long‐term average photosynthetic capacity (Vcmax) so that available environmental resources can be most efficiently used for photosynthesis. To test this hypothesis, we extend photosynthetic co‐ordination theory to predict the acclimation of Rd to growth temperature via a link to Vcmax, and compare predictions to a global set of measurements from 112 sites spanning all terrestrial biomes. This extended co‐ordination theory predicts that field‐measured Rd and Vcmax accessed at growth temperature (Rd,tg and Vcmax,tg) should increase by 3.7% and 5.5% per degree increase in growth temperature. These acclimated responses to growth temperature are less steep than the corresponding instantaneous responses, which increase 8.1% and 9.9% per degree of measurement temperature for Rd and Vcmax respectively. Data‐fitted responses proof indistinguishable from the values predicted by our theory, and smaller than the instantaneous responses. Theory and data are also shown to agree that the basal rates of both Rd and Vcmax assessed at 25°C (Rd,25 and Vcmax,25) decline by ~4.4% per degree increase in growth temperature. These results provide a parsimonious general theory for Rd acclimation to temperature that is simpler—and potentially more reliable—than the plant functional type‐based leaf respiration schemes currently employed in most ecosystem and land‐surface models.  相似文献   

6.
A brief review of the photosynthetic apparatus of higher plants is given, followed by a consideration of the modifications induced in this apparatus by changes in light intensity and light quality. Possible strategies by which plants may optimize photosynthetic activity by both long- and short-term modifications of their photosynthetic apparatus in response to changing light regimes are discussed.  相似文献   

7.
Photosynthetic electron transport rates (ETR), calculated from chlorophyll fluorescence parameters, were compared in long term light and dark adapted as well as photoinhibited Pisum sativum leaves using a novel chlorophyll fluorescence method and a new instrument: rapid light curves (RLC) generated with the MINI-PAM. RLCs are plots of ETRs versus actinic irradiances applied for 10 s. Large changes in maximum electron transport rates (ETRmax) were observed when leaves were shifted from dark to moderate light, or from dark to photoinhibitory light and vice versa. Maximum ETRs were very low following long term dark adaptation, but increased to maximum levels within 8 to 15 minutes of illumination. It took more than 3 hours, however, to return irradiance-exposed leaves to the fully dark adapted state. Quenching analysis of RLCs revealed large qE development in long-term dark adapted leaves accounting for the low ETRs. Leaves photoinhibited for 3 hours had similarly reduced ETRs. In these leaves, however, qI was largely responsible for this reduction. Actinic irradiance exposures and saturating flashes affected leaves with different irradiance histories differently.  相似文献   

8.
《BBA》2003,1607(1):5-17
Photosynthetic organisms exposed to a dynamic light environment exhibit complex transients of photosynthetic activities that are strongly dependent on the temporal pattern of the incident irradiance. In a harmonically modulated light of intensity I≈const.+sin(ωt), chlorophyll fluorescence response consists of a steady-state component, a component modulated with the angular frequency of the irradiance ω and several upper harmonic components (2ω, 3ω and higher). Our earlier reverse engineering analysis suggests that the non-linear response can be caused by a negative feedback regulation of photosynthesis. Here, we present experimental evidence that the negative feedback regulation of the energetic coupling between phycobilisome and Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC6803 indeed results in the appearance of upper harmonic modes in the chlorophyll fluorescence emission. Dynamic changes in the coupling of the phycobilisome to PSII are not accompanied by corresponding antiparallel changes in the Photosystem I (PSI) excitation, suggesting a regulation limited to PSII. Strong upper harmonic modes were also found in the kinetics of the non-photochemical quenching (NPQ) of chlorophyll fluorescence, of the P700 redox state and of the CO2 assimilation in tobacco (Nicotiana tabaccum) exposed to harmonically modulated light. They are ascribed to negative feedback regulation of the reactions of the Calvin-Benson cycle limiting the photosynthetic electron transport. We propose that the observed non-linear response of photosynthesis may also be relevant in a natural light environment that is modulated, e.g., by ocean waves, moving canopy or by varying cloud cover. Under controlled laboratory conditions, the non-linear photosynthetic response provides a new insight into dynamics of the regulatory processes.  相似文献   

9.
Responses of foliar light-saturated net assimilation rate (Amax), capacity for photosynthetic electron transport (Jmax) and mitochondrial respiration rate (Rd) to long-term canopy light and temperature environment were investigated in a temperate deciduous canopy composed of Populus tremula L. in the upper (17–28 m) and of Tilia cordata Mill. in the lower canopy layer (4–17 m). Climatic measurements indicated that seasonal average daily maximum air temperature (Tmax) was 5·5 °C (range 0·7–10·5 °C) higher in the top than in the bottom of the canopy, and strong positive correlations were observed between Tmax and seasonal average integrated quantum flux density (Qint), as well as between seasonal average daily mean temperature and Qint. Because of changes in leaf dry mass and nitrogen per unit area, Amax, Jmax, and Rd scaled positively with Qint in both species at a common leaf temperature (T). According to Jmax versus T response curves and dark chlorophyll fluorescence transients, photosynthetic electron transport was less heat resistant in P. tremula with optimum temperature of Jmax, Topt, of 33·5 ± 0·6 °C than in T. cordata with Topt of 40·7 ± 0·6 °C. This difference was suggested to manifest evolutionary adaptation of photosynthetic electron transport to cooler environments in P. tremula, the range of which extends farther north than that in T. cordata. Possibly because of acclimation to long-term canopy temperature environment, Topt was positively related to Qint in P. tremula, foliage of which was also exposed to higher irradiances and temperatures, but not in T. cordata, in the canopy of which quantum flux densities and temperatures were lower, and gradients in the environmental factors less pronounced. Parallel to changes in Topt, the activation energy for photosynthetic electron transport decreased with increasing Qint in P. tremula, indicating that Jmax of leaves acclimated to colder environment was more responsive to T in lower temperatures than that of high T acclimated leaves. Similar alterations in the activation energy for mitochondrial respiration rate were also observed, indicating that acclimation to temperature of mitochondrial and chloroplastic electron transport proceeds in a co-ordinated manner, and possibly involves long-term changes in membrane fluidity properties. We conclude that, because of correlations between temperature and light, the shapes of Jmax versus T, and Rd versus T response curves vary within tree canopies, and this needs to be taken account in modelling whole canopy photosynthesis.  相似文献   

10.
The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least‐cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C3 plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2). The model‐data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (Jmax/Vcmax) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2. Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2, limiting potential leaf‐level photosynthesis under future CO2 concentrations. Altogether, our results show that acclimation to temperature and CO2 is primarily related to resource conservation at the leaf level. Under future, warmer, high CO2 conditions, plants are therefore likely to use less nutrients for leaf‐level photosynthesis, which may impact whole‐plant to ecosystem functioning.  相似文献   

11.
Effects of nitrogen (N) supply on the limiting step of CO(2) assimilation rate (A) at 380 μmol mol(-1) CO(2) concentration (A(380) ) at several leaf temperatures were studied in several crops, since N nutrition alters N allocation between photosynthetic components. Contents of leaf N, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) increased with increasing N supply, but the cyt f/Rubisco ratio decreased. Large leaf N content was linked to a high stomatal (g(s) ) and mesophyll conductance (g(m) ), but resulted in a lower intercellular (C(i) ) and chloroplast CO(2) concentration (C(c) ) because the increase in g(s) and g(m) was insufficient to compensate for change in A(380) . The A-C(c) response was used to estimate the maximum rate of RuBP carboxylation (V(cmax) ) and chloroplast electron transport (J(max) ). The J(max) /V(cmax) ratio decreased with reductions in leaf N content, which was consistent with the results of the cyt f/Rubisco ratio. Analysis using the C(3) photosynthesis model indicated that A(380) tended to be limited by RuBP carboxylation in plants grown at low N concentration, whereas it was limited by RuBP regeneration in plants grown at high N concentration. We conclude that the limiting step of A(380) depends on leaf N content and is mainly determined by N partitioning between Rubisco and electron transport components.  相似文献   

12.
温度变化对藻类光合电子传递与光合放氧关系的影响   总被引:2,自引:0,他引:2  
张曼  曾波  张怡  韩博平 《生态学报》2010,30(24):7087-7091
由于直接测定藻类的光合速率耗时且不方便,研究者们常通过测定藻类光合电子传递速率的方式来间接反映其光合速率,理论上,以氧气产生来度量的总光合速率(PGross)与电子传递速率(ETR)之间应该存在很好的线性关系。然而,由于温度的变化会影响藻类的光呼吸等耗氧的生理过程从而影响光合作用中的氧气释放,因此温度可能会对PGross与ETR之间的线性关系产生影响。研究了温度变化对蛋白核小球藻(Cholorella pyrenoidosa)、菱形藻(Nitzschia sp.)和水生集胞藻(Synechocystis aquetilis Sauv.)的总光合放氧速率(PGross)与电子传递速率(ETR)之间比率的影响,结果表明PGross/ETR随温度的升高而降低,低温条件下PGross/ETR比值较高,说明在相同的电子传递速率的情况下水的光裂解产生的氧有更多的可以释放出来;在高温条件下PGross/ETR比值相对较低,说明高温条件下可能有相对更多的水光裂解产生的氧被用于耗氧的生理过程而没有释放出来。研究表明当温度发生变化时,光合放氧与电子传递之间并不呈线性关系,这说明将ETR作为实际光合生产的评价指标时要谨慎,不能不加分析地直接应用。  相似文献   

13.
To test the hypothesis that in temperate deciduous trees acclimation to potentially damaging high irradiances occurs via long-term adjustments in foliar photosynthetic capacity, and short-term changes in xanthophyll cycle pool size in response to weather fluctuations, nitrogen concentration and pigment composition were examined along a canopy light gradient in three species –Betula pendula, Populus tremula and Tilia cordata (from most shade intolerant to tolerant), and foliage photosynthetic potentials in P. tremula and T. cordata. Integrated quantum flux density (Qi) incident on leaves was estimated with a method combining hemispherical photography and light measurements with quantum sensors made over the growing season. Long- and short-term light indices – average total seasonal daily integrated quantum flux density (Ts, mol m–2 d–1) and that of the 3 d preceding foliage sampling (T3d) – were calculated for each sampled leaf. In addition to total integrated quantum flux density, the part of Qi attributable to direct flux was also computed. Strong linear relationships between the capacity for photosynthetic electron transport per area (Jamax), estimated from in situ measurements of effective quantum yield of photosystem II (PS II), and Qi averaged over the season and over the preceding 3 d were found for all studied species. However, the major determinant of Jamax, the product of electron transport capacity per leaf dry mass (Jmmax) and leaf dry mass per area (MA), was MA rather than Jmmax, which was relatively constant along the light gradient. There was evidence that Jamax is more tightly related to Ts, which characterizes the light climate during foliar development, than to short-term integrated light, possibly because there is little flexibility in adjustments in MA after the completion of foliar growth. Leaf chlorophyll concentrations and the investment of leaf nitrogen in chlorophyll (Chl/N) were negatively related to Qi– an investment pattern which improves light harvesting in low light. Xanthophyll cycle pool size (VAZ, violaxanthin + antheraxanthin + zeaxanthin) either expressed per unit chlorophyll (VAZ/Chl) or as a fraction of total carotenoids (VAZ/Car) increased with increasing Qi in all species. However, contrary to Jamax, it tended to correlate more strongly with short-term than with long-term average integrated light. There were few interspecific differences in Jamax, Chl/N, VAZ/Chl and VAZ/Car when the variability in light level incident to the leaves was accounted for, indicating that the foliage of both shade-intolerant and -tolerant temperate tree species possesses considerable phenotypic flexibility. Collectively these results support the view that rapid adjustment of the xanthophyll cycle pool size provides an important means for acclimation to light fluctuations in a time scale of days, during which the potential for photosynthetic quenching of excitation energy is not likely to change appreciably.  相似文献   

14.
在大田控制条件下,以植物叶片气体交换和叶绿素荧光测定相结合的方法,研究抗旱性不同品种冬小麦拔节期叶片的光合电子传递及激发能利用分配对氮素响应的结果表明,施氮可提高抗旱性不同品种小麦叶片天线色素吸收光能的能力,虽然氮素不能改变激发能在光合碳还原(PCR)和光合碳氧化(PCO)之间的分配比例,但可提高PSⅡ总电子传递速率(JF)和Pn。低氮下不同品种小麦叶片的热耗散比例有差异,但中高氛下叶片之间无显著差异。旱地品种的鼻值随氮素水平的提高而先增加后下降,而水地品种则表现为持续升高:2个小麦品种的叶片J0值随氮素水平的提高而呈持续升高的变化趋势。氮素对叶片PSⅡ反应中心活性有影响.而不同抗旱性品种之间亦有差别,说明施氮可改善小麦叶片热耗散和光化学反应对激发能的竞争关系,从而增强光合机构的自我保护能力。  相似文献   

15.
The high mountain plant species Ranunculus glacialis has a low antioxidative scavenging capacity and a low activity of thermal dissipation of excess light energy despite its growth under conditions of frequent light and cold stress. In order to examine whether this species is protected from over-reduction by matching photosystem II (PSII) electron transport (ETR) and carbon assimilation, both were analysed simultaneously at various temperatures and light intensities using infrared gas absorption coupled with chlorophyll fluorescence. ETR exceeded electron consumption by carbon assimilation at higher light intensities and at all temperatures tested, necessitating alternative electron sinks. As photorespiration might consume the majority of excess electrons, photorespiration was inhibited by either high internal leaf CO2 molar ratio (Ci), low oxygen partial pressure (0.5% oxygen), or both. At 0.5% oxygen ETR was significantly lower than at 21% oxygen. At 21% oxygen, however, ETR still exceeded carbon assimilation at high Ci, suggesting that excess electrons are transferred to another oxygen consuming reaction when photorespiration is blocked. Nevertheless, photorespiration does contribute to electron consumption. While the activity of the water –water cycle to electron consumption is not known in leaves of R. glacialis, indirect evidence such as the high sensitivity to oxidative stress and the low initial NADP-malate dehydrogenase (NADP-MDH) activity suggests only a minor contribution as an alternative electron sink. Alternatively, the plastid terminal oxidase (PTOX) may transfer excess electrons to oxygen. This enzyme is highly abundant in R. glacialis leaves and exceeds the PTOX content of every other plant species so far examined, including those of transgenic tomato leaves overexpressing the PTOX protein. Finally, PTOX contents strongly declined during deacclimation of R. glacialis plants, suggesting their important role in photoprotection. Ranunculus glacialis is the first reported plant species with such a high PTOX protein content.  相似文献   

16.
With average global temperatures predicted to increase over the next century, it is important to understand the extent and mechanisms of C4 photosynthetic acclimation to modest increases in growth temperature. To this end, we compared the photosynthetic responses of two C4 grasses (Panicum coloratum and Cenchrus ciliaris) and one C4 dicot (Flaveria bidentis) to growth at moderate (25/20 degrees C, day/night) or high (35/30 degrees C, day/night) temperatures. In all three C4 species, CO2 assimilation rates (A) underwent significant thermal acclimation, such that when compared at growth temperatures, A increased less than what would be expected given the strong response of A to short-term changes in leaf temperature. Thermal photosynthetic acclimation was further manifested by an increase in the temperature optima of A, and a decrease in leaf nitrogen content and leaf mass per area in the high- relative to the moderate-temperature-grown plants. Reduced photosynthetic capacity at the higher growth temperature was underpinned by selective changes in photosynthetic components. Plants grown at the higher temperature had lower amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase and cytochrome f and activity of carbonic anhydrase. The activities of photosystem II (PSII) and phosphoenolpyruvate carboxylase were not affected by growth temperature. Chlorophyll fluorescence measurements of F. bidentis showed a corresponding decrease in the quantum yield of PSII (phi(PSII)) and an increase in non-photochemical quenching (phi(NPQ)). It is concluded that through these biochemical changes, C4 plants maintain the balance between the various photosynthetic components at each growth temperature, despite the differing temperature dependence of each process. As such, at higher temperatures photosynthetic nitrogen use efficiency increases more than A. Our results suggest C4 plants will show only modest changes in photosynthetic rates in response to changes in growth temperature, such as those expected within or between seasons, or the warming anticipated as a result of global climate change.  相似文献   

17.
Although only a small proportion of plant phosphorus (P) is used for photosynthesis, the relationships between P and photosynthesis can be strong. It was hypothesized, in this study, that variation in the allocation of orthophosphate (Pi) between active (cytoplasmic) and nonactive (vacuolar) pools would underpin differences in rates of photosynthesis in 4-month-old Eucalyptus globulus seedlings grown with a varying P supply. Photosynthetic biochemistry was assessed by the response of net photosynthesis to increasing intercellular [CO2]. Cytoplasmic Pi was sequestered as mannose 6-phosphate. Total P and the proportion of P as Pi were positively related to P supply. The ratios of active : stored Pi (10-24%) varied little over the range of treatments. Active Pi was positively related to P supply, as was photosynthesis (7 micromol CO2 m(-2) s(-1) with 0 mM P vs. 16 micromol CO2 m(-2) s(-1) with 0.32 mM P). Positive relationships between P supply and photosynthesis were explained best by leaf P content, not by active pools of Pi. The distribution of Pi between the vacuole and the cytoplasm had little impact on the photosynthetic phosphorus-use efficiency (PPUE), and reductions in cytoplasmic Pi had little effect on photosynthesis. Hence, PPUE is an unsuitable guide for assessing plant responses to increasingly unavailable P in the environment.  相似文献   

18.
Photosynthetic capacity and its relationship to leaf nitrogen content are two of the most sensitive parameters of terrestrial biosphere models (TBM) whose representation in global‐scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Here, we use data of qualitative traits, climate and soil to subdivide the terrestrial vegetation into functional types (PFT), and then assimilate observations of carboxylation capacity, Vmax (723 data points), and maximum photosynthesis rates, Amax (776 data points), into the C3 photosynthesis model proposed by Farquhar et al. to constrain the relationship of (Vmax normalised to 25 °C) to leaf nitrogen content per unit leaf area for each PFT. In a second step, the resulting functions are used to predict per PFT from easily measurable values of leaf nitrogen content in natural vegetation (1966 data points). Mean values of thus obtained are implemented into a TBM (BETHY within the coupled climate–vegetation model ECHAM5/JSBACH) and modelled gross primary production (GPP) is compared with independent observations on stand scale. Apart from providing parameter ranges per PFT constrained from much more comprehensive data, the results of this analysis enable several major improvements on previous parameterisations. (1) The range of mean between PFTs is dominated by differences of photosynthetic nitrogen use efficiency (NUE, defined as divided by leaf nitrogen content), while within each PFT, the scatter of values is dominated by the high variability of leaf nitrogen content. (2) We find a systematic depression of NUE on certain tropical soils that are known to be deficient in phosphorous. (3) of tropical trees derived by this study is substantially lower than earlier estimates currently used in TBMs, with an obvious effect on modelled GPP and surface temperature. (4) The root‐mean‐squared difference between modelled and observed GPP is substantially reduced.  相似文献   

19.
Q. Han  M. Araki  Y. Chiba 《Photosynthetica》2006,44(4):523-529
In order to quantify the effects of thinning on photosynthetic parameters and associated change in leaf nitrogen (N) contents, half of the trees in a 10-year-old Chamaecyparis obtusa (Sieb. et Zucc.) Endl. stand (36° 3′N, 140°7′E) were removed, giving a final density of 1 500 trees ha−1, in May 2004. Photosynthetic photon flux density (PPFD) and leaf N and carbon (C) contents in the lower (L), middle (M), and upper (U) crowns were monitored one, three, and five months after thinning in both the thinned stand and a non-thinned control stand. In addition, leaves’ photosynthetic responses to CO2 concentration were simultaneously measured in situ to estimate the maximum rates of carboxylation (Vcmax) and electron transport (Jmax). Thinning increased PPFD in the L and M crowns but not in the U crown. Vcmax in both the L and M crowns of the thinned stand increased significantly in comparison with the same crown position of the control stand in the three and five months following thinning. In addition, the thinned stand exhibited an increase in N partitioned to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in the L and M crowns relative to the control stand three and five months after thinning, indicating that N had been redistributed within the photosynthetic machinery. Thinning did not affect N per unit area at any of the crown positions, but significantly increased the content of N as a fraction of the total leaf dry mass in the L and M crowns three and five months after thinning. This was a consequence of a decrease in leaf dry mass due to rapid shoot growth. Thus thinning did not cause a redistribution of N between leaves. Thinning improved irradiance in the L and M crowns of C. obtusa, leading to photosynthetic acclimation. Photosynthetic acclimation in the first year mainly occurred via redistribution of N within but not between leaves.  相似文献   

20.
Leaf gas-exchange and chemical composition were investigated in seedlings of Quercus suber L. grown for 21 months either at elevated (700 μmol mol–1) or normal (350 μmol mol–1) ambient atmospheric CO2 concentrations, [CO2], in a sandy nutrient-poor soil with either ‘high’ N (0.3 mol N m–3 in the irrigation solution) or with ‘low’ N (0.05 mol N m–3) and with a constant suboptimal concentration of the other macro- and micronutrients. Although elevated [CO2] yielded the greatest total plant biomass in ‘high’ nitrogen treatment, it resulted in lower leaf nutrient concentrations in all cases, independent of the nutrient addition regime, and in greater nonstructural carbohydrate concentrations. By contrast, nitrogen treatment did not affect foliar N concentrations, but resulted in lower phosphorus concentrations, suggesting that under lower N, P use-efficiency in foliar biomass production was lower. Phosphorus deficiency was evident in all treatments, as photosynthesis became CO2 insensitive at intercellular CO2 concentrations larger than ≈ 300 μmol mol–1, and net assimilation rates measured at an ambient [CO2] of 350 μmol mol–1 or at 700 μmol mol–1 were not significantly different. Moreover, there was a positive correlation of foliar P with maximum Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) carboxylase activity (Vcmax), which potentially limits photosynthesis at low [CO2], and the capacities of photosynthetic electron transport (Jmax) and phosphate utilization (Pmax), which are potentially limiting at high [CO2]. None of these potential limits was correlated with foliar nitrogen concentration, indicating that photosynthetic N use-efficiency was directly dependent on foliar P availability. Though the tendencies were towards lower capacities of potential limitations of photosynthesis in high [CO2] grown specimens, the effects were statistically insignificant, because of (i) large within-treatment variability related to foliar P, and (ii) small decreases in P/N ratio with increasing [CO2], resulting in balanced changes in other foliar compounds potentially limiting carbon acquisition. The results of the current study indicate that under P-deficiency, the down-regulation of excess biochemical capacities proceeds in a similar manner in leaves grown under normal and elevated [CO2], and also that foliar P/N ratios for optimum photosynthesis are likely to increase with increasing growth CO2 concentrations. Symbols: A, net assimilation rate (μmol m–2 s–1); Amax, light-saturated A (μmol m–2 s–1); α, initial quantum yield at saturating [CO2] and for an incident Q (mol mol–1); [CO2], atmospheric CO2 concentration (μmol mol–1); Ci, intercellular CO2 concentration (μmol mol–1); Ca, CO2 concentration in the gas-exchange cuvette (μmol mol–1); FB, fraction of leaf N in ‘photoenergetics’; FL, fraction of leaf N in light harvesting; FR, fraction of leaf N in Rubisco; Γ*, CO2 compensation concentration in the absence of Rd (μmol mol–1); Jmax*, capacity for photosynthetic electron transport; Jmc, capacity for photosynthetic electron transport per unit cytochrome f (mol e[mol cyt f]–1 s–1); Kc, Michaelis-Menten constant for carboxylation (μmol mol–1); Ko, Michaelis-Menten constant for oxygenation (mmol mol–1); MA, leaf dry mass per area (g m–2); O, intercellular oxygen concentration (mmol mol–1); [Pi], concentration of inorganic phosphate (mM); Pmax*, capacity for phosphate utilization; Q, photosynthetically active quantum flux density (μmol m–2 s–1); Rd*, day respiration (CO2 evolution from nonphotorespiratory processes continuing in the light); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RUBP, ribulose-1,5-bisphosphate; Tl, leaf temperature (°C); UTPU*, rate of triose phosphate utilization; Vcmax*, maximum Rubisco carboxylase activity; Vcr, specific activity of Rubisco (μmol CO2[g Rubisco]–1 s–1] *given in either μmol m–2 s–1 or in μmol g–1 s–1 as described in the text.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号