首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The leafy heads of cabbage (Brassica oleracea), Chinese cabbage (Brassica rapa ssp. pekinensis), Brussels sprouts (B. oleracea ssp. gemmifera) and lettuce (Lactuca sativa) comprise extremely incurved leaves that are edible vegetable products. The heading time is important for high quality and yield of these crops. Here, we report that BrpSPL9‐2 (B. rapa ssp. pekinensis SQUAMOSA PROMOTER BINDING‐LIKE 9‐2), a target gene of microRNA brp‐miR156, controls the heading time of Chinese cabbage. Quantitative measurements of leaf shapes, sizes, colour and curvature indicated that heading is a late adult phase of vegetative growth. During the vegetative period, miR156 levels gradually decreased from the seedling stage to the heading one, whereas BrpSPL9‐2 and BrpSPL15‐1 mRNAs increased progressively and reached the highest levels at the heading stage. Overexpression of a mutated miR156‐resistant form of BrpSPL9‐2 caused the significant earliness of heading, concurrent with shortening of the seedling and rosette stages. By contrast, overexpression of miR156 delayed the folding time, concomitant with prolongation of the seedling and rosette stages. Morphological analysis reveals that the significant earliness of heading in the transgenic plants overexpressing BrpSPL9‐2 gene was produced because the juvenile phase was absent and the early adult phase shortened, whereas the significant delay of folding in the transgenic plants overexpressing Brp‐MIR156a was due to prolongation of the juvenile and early adult phases. Thus, miR156 and BrpSPL9 genes are potentially important for genetic improvement of earliness of Chinese cabbage and other crops.  相似文献   

4.
Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.  相似文献   

5.
6.
The upper leaf sheath of rice (Oryza sativa L.) serves as a temporary starch sink before heading, subsequently becoming a carbon source tissue to the growing panicle at the post-heading stage. The time of sink–source transition in upper leaf sheaths is highly correlated to the panicle exsertion. Here, we found that the expression profiles of starch synthesis genes such as ADP-glucose pyrophosphorylase large subunit 2, granule-bound starch synthase II, soluble starch synthase I, starch branching enzyme (SBE) I, SBEIII, and SBEIV were highly correlated with starch content changes during the heading period in the second leaf sheath below the flag leaf. In addition, the α-amylase2A and β-amylase were considered as major genes that were in charge of starch degradation at the post-heading period. Of the five sucrose transporter (OsSUT) genes, OsSUT1 and OsSUT4 appeared to play an important role in sucrose loading into the phloem of source leaf sheaths. Moreover, the microarray-based data implied that the dominant processes associated with functional leaf sheath transition from sink to source were carbohydrate metabolism and the translocation of the carbon and nitrogen sources and inorganic phosphate.  相似文献   

7.
8.
9.
10.
Farnesyl diphosphate (FPP) synthase (FPS) catalyses the synthesis of FPP, the major substrate used by cytosolic and mitochondrial branches of the isoprenoid pathway. Arabidopsis contains two farnesyl diphosphate synthase genes, FPS1 and FPS2, that encode isozymes FPS1L (mitochondrial), FPS1S and FPS2 (both cytosolic). Here we show that simultaneous knockout of both FPS genes is lethal for Arabidopsis, and embryo development is arrested at the pre‐globular stage, demonstrating that FPP‐derived isoprenoid metabolism is essential. In addition, lack of FPS enzyme activity severely impairs male genetic transmission. In contrast, no major developmental and metabolic defects were observed in fps1 and fps2 single knockout mutants, demonstrating the redundancy of the genes. The levels of sterols and ubiquinone, the major mitochondrial isoprenoid, are only slightly reduced in the single mutants. Although one functional FPS gene is sufficient to support isoprenoid biosynthesis for normal growth and development, the functions of FPS1 and FPS2 during development are not completely redundant. FPS1 activity has a predominant role during most of the plant life cycle, and FPS2 appears to have a major role in seeds and during the early stages of seedling development. Lack of FPS2 activity in seeds, but not of FPS1 activity, is associated with a marked reduction in sitosterol content and positive feedback regulation of 3‐hydroxy‐3‐methylglutaryl CoA reductase activity that renders seeds hypersensitive to the 3‐hydroxy‐3‐methylglutaryl CoA reductase inhibitor mevastatin.  相似文献   

11.
12.
13.
【目的】研究蓝灰链霉菌中Aco类群感效应信号分子合酶基因scy A1缺失对细胞生理代谢和调控网络造成的广泛性扰动,揭示Scy A1对细胞生命活动的全局性调控作用。【方法】通过测定细胞干重确定scy A1缺失对液体发酵条件下细胞生长的影响。采用RNA-Seq比较分析探究蓝灰链霉菌scy A1突变株和野生型NMWT1发酵培养3d和6d全基因组范围内的显著差异表达基因。【结果】scy A1缺失不影响液体发酵条件下细胞生物量的积累。比较转录组分析显示scy A1缺失后,糖酵解和三羧酸循环途径基因表达表现出双向显著差异变化趋势;L-半乳糖形成UDP-葡萄糖途径、戊糖磷酸途径、氨基酸(L-缬氨酸、L-异亮氨酸和L-色氨酸)合成途径和嘌呤核苷酸降解途径相关基因均表现出显著上调趋势。众多次级代谢生物合成基因簇、保守转录调控因子和菌丝体结构性蛋白组分编码基因表达显著下调,而少数则表达水平显著上调。【结论】Scy A1广泛影响了菌株的初级代谢、次级代谢、保守调控因子和菌丝体结构相关基因的表达。总之,本研究丰富了我们对Aco类群感效应信号分子合酶功能的认知。  相似文献   

14.
15.
16.
Parthenocarpy, the productions of seedless fruit without pollination or fertilization, is a potentially desirable trait in many commercially grown fruits, especially in pear, which is self‐incompatible. Phytohormones play important roles in fruit set, a process crucial for parthenocarpy. In this study, 2,4‐dichlorophenoxyacetic acid (2,4‐D), an artificially synthesized plant growth regulator with functions similar to auxin, was found to induce parthenocarpy in pear. Histological observations revealed that 2,4‐D promoted cell division and expansion, which increased cortex thickness, but the effect was weakened by paclobutrazol (PAC), a gibberellin (GA) biosynthesis inhibitor. Phenotypic differences in pear may therefore be due to different GA contents. Hormone testing indicated that 2,4‐D mainly induced the production of bioactive GA4, rather than GA3. Three key oxidase genes function in the GA biosynthetic pathway: GA20ox, GA3ox and GA2ox. In a pear group treated with only 2,4‐D, PbGA20ox2‐like and PbGA3ox‐1 were significantly upregulated. When treated with 2,4‐D supplemented with PAC, however, expression levels of these genes were significantly downregulated. Additionally, PbGA2ox1‐like and PbGA2ox2‐like expression levels were significantly downregulated in pear treated with either 2,4‐D only or 2,4‐D supplemented with PAC. We thus hypothesize that 2,4‐D can induce parthenocarpy by enhancing GA4 biosynthesis.  相似文献   

17.
18.
19.
Trehalose 6-phosphate synthase(TPS),an enzyme that hydrolyzes two glucose molecules to yield trchalose,plays a pivotal role in various physiological processes.In this study,we cloned the trehalose-6-phosphate synthase gene(HvTPS)and investigated its expression patterns in various tssues and d:velopmental stages in Heortia vitessoides Moore(Lepidoptera:Crambidac).HvTPS was highly expressed in the fat body and after pupation or before molting.We knocked down TPS in H.vitessoides by RNA interference and found that 3.0μg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes.Additionally.compared to the controls,TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0μg of dsHIvTPS.Furthermore,the silencing of HvTPS suppressed the cxpression of six key genecs in the chitin biosynthesis pathway and one key gene related to lipid catabolism.The expression levels of two genes associated with lipid biosynthesis were upregulated.These results strongly suggest that HvTPS is essential for the normal growth and development of H.vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号