首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Salmonids spawn in highly diverse habitats, exhibit strong genetic population structuring, and can quickly colonize newly created habitats with few founders. Spawning traits often differ among populations, but it is largely unknown if these differences are adaptive or due to genetic drift. To test if sockeye salmon (Oncorhynchus nerka) populations are adapted to glacial, beach, and tributary spawning habitats, we examined variation in heritable phenotypic traits associated with spawning in 13 populations of wild sockeye salmon in Lake Clark, Alaska. These populations were commonly founded between 100 and 400 hundred sockeye salmon generations ago and exhibit low genetic divergence at 11 microsatellite loci (F ST < 0.024) that is uncorrelated with spawning habitat type. We found that mean P ST (phenotypic divergence among populations) exceeded neutral F ST for most phenotypic traits measured, indicating that phenotypic differences among populations could not be explained by genetic drift alone. Phenotypic divergence among populations was associated with spawning habitat differences, but not with neutral genetic divergence. For example, female body color was lighter and egg color was darker in glacial than non-glacial habitats. This may be due to reduced sexual selection for red spawning color in glacial habitats and an apparent trade-off in carotenoid allocation to body and egg color in females. Phenotypic plasticity is an unlikely source of phenotypic differences because Lake Clark sockeye salmon spend nearly all their lives in a common environment. Our data suggest that Lake Clark sockeye salmon populations are adapted to spawning in glacial, beach and tributary habitats and provide the first evidence of a glacial spawning ecotype in salmonids. Glacial spawning habitats are often young (i.e., <200 years old) and ephemeral. Thus, local adaptation of sockeye salmon to glacial habitats appears to have occurred recently.  相似文献   

2.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

3.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

4.
Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post‐glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QSTFST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST, indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST, but we found temperature‐dependent adaptive divergence close to the contact zone. These results indicate that lineage‐specific variation can account for much of the adaptive divergence along a latitudinal gradient.  相似文献   

5.
To understand the biology of organisms it is important to take into account the evolutionary forces that have acted on their constituent populations. Neutral genetic variation is often assumed to reflect variation in quantitative traits under selection, though with even low neutral divergence there can be substantial differentiation in quantitative genetic variation associated with locally adapted phenotypes. To study the relative roles of natural selection and genetic drift in shaping phenotypic variation, the levels of quantitative divergence based on phenotypes (PST) and neutral genetic divergence (FST) can be compared. Such a comparison was made between 10 populations of Finnish House Sparrows (= 238 individuals) collected in 2009 across the whole country. Phenotypic variation in tarsus‐length, wing‐length, bill‐depth, bill‐length and body mass were considered and 13 polymorphic microsatellite loci were analysed to quantify neutral genetic variation. Calculations of PST were based on Markov‐Chain Monte Carlo Bayesian estimates of phenotypic variances across and within populations. The robustness of the conclusions of the PSTFST comparison was evaluated by varying the proportion of variation due to additive genetic effects within and across populations. Our results suggest that body mass is under directional selection, whereas the divergence in other traits does not differ from neutral expectations. These findings suggest candidate traits for considering gene‐based studies of local adaptation. The recognition of locally adapted populations may be of value in the conservation of this declining species.  相似文献   

6.
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.  相似文献   

7.
Understanding the environmental parameters that drive adaptation among populations is important in predicting how species may respond to global climatic changes and how gene pools might be managed to conserve adaptive genetic diversity. Here, we used Bayesian FST outlier tests and allele–climate association analyses to reveal two Eucalyptus EST‐SSR loci as strong candidates for diversifying selection in natural populations of a southwestern Australian forest tree, Eucalyptus gomphocephala (Myrtaceae). The Eucalyptus homolog of a CONSTANS‐like gene was an FST outlier, and allelic variation showed significant latitudinal clinal associations with annual and winter solar radiation, potential evaporation, summer precipitation and aridity. A second FST outlier locus, homologous to quinone oxidoreductase, was significantly associated with measures of temperature range, high summer temperature and summer solar radiation, with important implications for predicting the effect of temperature on natural populations in the context of climate change. We complemented these data with investigations into neutral population genetic structure and diversity throughout the species range. This study provides an investigation into selection signatures at gene‐homologous EST‐SSRs in natural Eucalyptus populations, and contributes to our understanding of the relationship between climate and adaptive genetic variation, informing the conservation of both putatively neutral and adaptive components of genetic diversity.  相似文献   

8.
Endangered species are grouped into genetically discrete populations to direct conservation efforts. Mitochondrial control region (mtCR) haplotypes are used to elucidate deep divergences between populations, as compared to nuclear microsatellites that can detect recent structuring. When prior populations are unknown, it is useful to subject microsatellite data to clustering and/or ordination population inference. Olive ridley sea turtles (Lepidochelys olivacea) are the most abundant sea turtle, yet few studies have characterized olive ridley population structure. Recently, clustering results of olive ridleys in the Eastern Tropical Pacific Ocean suggested weak structuring (FST = 0.02) between Mexico and Central America. We analyzed mtCR haplotypes, new microsatellite genotypes from Costa Rica, and preexisting microsatellite genotypes from olive ridleys across the Eastern Tropical Pacific, to further explore population structuring in this region. We subjected inferred populations to multiple analyses to explore the mechanisms behind their structuring. We found 10 mtCR haplotypes from 60 turtles nesting at three sites in Costa Rica, but did not detect divergence between Costa Rican sites, or between Central America and Mexico. In Costa Rica, clustering suggested one population with no structuring, but ordination suggested four cryptic clusters with moderate structuring (FST = 0.08, p < .001). Across the Eastern Tropical Pacific, ordination suggested nine cryptic clusters with moderate structuring (FST = 0.103, p < .001) that largely corresponded to Mexican and Central American populations. All ordination clusters displayed significant internal relatedness relative to global relatedness (p < .001) and contained numerous sibling pairs. This suggests that broadly dispersed family lineages have proliferated in Eastern Tropical Pacific olive ridleys and corroborates previous work showing basin‐wide connectivity and shallow population structure in this region. The existence of broadly dispersed kin in Eastern Tropical Pacific olive ridleys has implications for management of olive ridleys in this region, and adds to our understanding of sea turtle ecology and life history, particularly in light of the natal‐homing paradigm.  相似文献   

9.
Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population‐specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate‐related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin‐wide to the metapopulation scale). Sensitivity analysis (leave‐one‐population‐out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (= 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.  相似文献   

10.
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

11.
QST, a measure of quantitative genetic differentiation among populations, is an index that can suggest local adaptation if QST for a trait is sufficiently larger than the mean FST of neutral genetic markers. A previous method by Whitlock and Guillaume derived a simulation resampling approach to statistically test for a difference between QST and FST, but that method is limited to balanced data sets with offspring related as half‐sibs through shared fathers. We extend this approach (i) to allow for a model more suitable for some plant populations or breeding designs in which offspring are related through mothers (assuming independent fathers for each offspring; half‐sibs by dam); and (ii) by explicitly allowing for unbalanced data sets. The resulting approach is made available through the R package QstFstComp.  相似文献   

12.
A key aim of evolutionary biology – inferring the action of natural selection on wild species – can be achieved by comparing neutral genetic differentiation between populations (FST) with quantitative genetic variation (QST). Each of the three possible outcomes of comparisons of QST and FST (QST FST, QST FST, QST FST) is associated with an inference (diversifying selection, genetic drift, uniform selection, respectively). However, published empirical and theoretical studies have focused on the QST FST outcome. We believe that this reflects the absence of a straightforward biological interpretation of the QST < FST pattern. We here report recent evidence of this neglected evolutionary pattern, provide guidelines to its interpretation as either a canalization phenomenon or a consequence of uniform selection and discuss the significant importance this issue will have for the area of evolutionary biology.  相似文献   

13.
The identification of the candidate genes that play key role in phenotypic variation in livestock populations can provide new information about evolution and positive selection. IL‐33 (71954) (Interleukin) gene is associated with the increased nematode resistance in small ruminants; however, the role of IL‐33 for the genetic control of different diseases in Chinese goat breeds is poorly described in scientific literature. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single‐nucleotide polymorphism in IL‐33 gene. Fixation Index (FST)‐based method was used for the outlier loci determination and found that IL‐33 was present in outlier area with the provisional combined allocation of mean heterozygosity and FST. Positively selected IL‐33 gene was significantly, that is, p(Simul FST < sample FST = 0.98*) present in corresponding positive selection area. Hence, our study provided novel information about the nucleotide variations in IL‐33 gene and found to be nonsynonymous which may helpful for the genetic control of diseases by enhancing the immune system in local Chinese goat breeds as well as in other analyzed vertebrate species.  相似文献   

14.
Dispersal and local patterns of adaptation play a major role on the ecological and evolutionary trajectory of natural populations. In this study, we employ a combination of genetic (25 microsatellite markers) and field‐based information (seven study years) to analyse the impact of immigration and local patterns of adaptation in two nearby (< 7 km) blue tit (Cyanistes caeruleus) populations. We used genetic assignment analyses to identify immigrant individuals and found that dispersal rate is female‐biased (72%). Data on lifetime reproductive success indicated that immigrant females produced fewer local recruits than their philopatric counterparts whereas immigrant males recruited more offspring than those that remained in their natal location. In spite of the considerably higher immigration rates of females, our results indicate that, in absolute terms, their demographic and genetic impact in the receiving populations is lower than that in immigrant males. Immigrants often brought novel alleles into the studied populations and a high proportion of them were transmitted to their recruits, indicating that the genetic impact of immigrants is not ephemeral. Although only a few kilometres apart, the two study populations were genetically differentiated and showed strong divergence in different phenotypic and life‐history traits. An almost absent inter‐population dispersal, together with the fact that both populations receive immigrants from different source populations, is probably the main cause of the observed pattern of genetic differentiation. However, phenotypic differentiation (PST) for all the studied traits greatly exceeded neutral genetic differentiation (FST), indicating that divergent natural selection is the prevailing factor determining the evolutionary trajectory of these populations. Our study highlights the importance of integrating individual‐ and population‐based approaches to obtain a comprehensive view about the role of dispersal and natural selection on structuring the genotypic and phenotypic characteristics of natural populations.  相似文献   

15.
In the context of global changes, the long‐term viability of populations of endangered ectotherms may depend on their adaptive potential and ability to cope with temperature variations. We measured responses of Atlantic salmon embryos from four populations to temperature variations and used a QSTFST approach to study the adaptive divergence among these populations. Embryos were reared under two experimental conditions: a low temperature regime at 4 °C until eyed‐stage and 10 °C until the end of embryonic development and a high temperature regime with a constant temperature of 10 °C throughout embryonic development. Significant variations among populations and population × temperature interactions were observed for embryo survival, incubation time and length. QST was higher than FST in all but one comparison suggesting an important effect of divergent selection. QST was also higher under the high‐temperature treatment than at low temperature for length and survival due to a higher variance among populations under the stressful warmer treatment. Interestingly, heritability was lower for survival under high temperature in relation to a lower additive genetic variance under that treatment. Overall, these results reveal an adaptive divergence in thermal plasticity in embryonic life stages of Atlantic salmon suggesting that salmon populations may differentially respond to temperature variations induced by climate change. These results also suggest that changes in temperature may alter not only the adaptive potential of natural populations but also the selection regimes among them.  相似文献   

16.
Chilean mussel populations have been thought to be panmictic with limited genetic structure. Genotyping‐by‐sequencing approaches have enabled investigation of genomewide variation that may better distinguish populations that have evolved in different environments. We investigated neutral and adaptive genetic variation in Mytilus from six locations in southern Chile with 1240 SNPs obtained with RAD‐seq. Differentiation among locations with 891 neutral SNPs was low (FST = 0.005). Higher differentiation was obtained with a panel of 58 putative outlier SNPs (FST = 0.114) indicating the potential for local adaptation. This panel identified clusters of genetically related individuals and demonstrated that much of the differentiation (~92%) could be attributed to the three major regions and environments: extreme conditions in Patagonia, inner bay influenced by aquaculture (Reloncaví), and outer bay (Chiloé Island). Patagonia samples were most distinct, but additional analysis carried out excluding this collection also revealed adaptive divergence between inner and outer bay samples. The four locations within Reloncaví area were most similar with all panels of markers, likely due to similar environments, high gene flow by aquaculture practices, and low geographical distance. Our results and the SNP markers developed will be a powerful tool supporting management and programs of this harvested species.  相似文献   

17.
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions.  相似文献   

18.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

19.
Chromosomal inversions facilitate local adaptation of beneficial mutations and modulate genetic polymorphism, but the extent of their effects within the genome is still insufficiently understood. The genome of Anopheles funestus, a malaria mosquito endemic to sub‐Saharan Africa, contains an impressive number of paracentric polymorphic inversions, which are unevenly distributed among chromosomes and provide an excellent framework for investigating the genomic impacts of chromosomal rearrangements. Here, we present results of a fine‐scale analysis of genetic variation within the genome of two weakly differentiated populations of Anopheles funestus inhabiting contrasting moisture conditions in Cameroon. Using population genomic analyses, we found that genetic divergence between the two populations is centred on regions of the genome corresponding to three inversions, which are characterized by high values of FST, absolute sequence divergence and fixed differences. Importantly, in contrast to the 2L chromosome arm, which is collinear, nucleotide diversity is significantly reduced along the entire length of three autosome arms bearing multiple overlapping chromosomal rearrangements. These findings support the idea that interactions between reduced recombination and natural selection within inversions contribute to sculpt nucleotide polymorphism across chromosomes in An. funestus.  相似文献   

20.
Divergent selection at ecologically important traits is thought to be a major factor driving phenotypic differentiation between populations. To elucidate the role of different evolutionary processes shaping the variation in gill raker number of European whitefish (Coregonus lavaretus sensu lato) in the Baltic Sea basin, we assessed the relationships between genetic and phenotypic variation among and within three whitefish ecotypes (sea spawners, river spawners and lake spawners). To generate expected neutral distribution of FST and to evaluate whether highly variable microsatellite loci resulted in deflated FST estimates compared to less variable markers, we performed population genetic simulations under finite island and hierarchical island models. The genetic divergence observed among (FCT = 0.010) and within (FST = 0.014–0.041) ecotypes was rather low. The divergence in gill raker number, however, was substantially higher between sea and river spawners compared to observed microsatellite data and simulated neutral baseline (PCT > FCT). This suggests that the differences in gill raker number between sea and river spawners are likely driven by divergent natural selection. We also found strong support for divergent selection on gill raker number among different populations of sea spawners (PST > FST), most likely caused by highly variable habitat use and diverse diet. The putative role of divergent selection within lake spawners initially inferred from empirical microsatellite data was not supported by simulated FST distributions. This work provides a first formal test of divergent selection on gill raker number in Baltic whitefish, and demonstrates the usefulness of population genetic simulations to generate informative neutral baselines for PSTFST analyses helping to disentangle the effects of stochastic evolutionary processes from natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号