首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Augmentative biological control of tephritid fruit flies would benefit from: (1) synthetic attractants to monitor the survival and dispersal of released parasitoids and (2) synthetic oviposition stimulants to reduce production costs of parasitoid species that are now prohibitively costly to mass-rear. Utetes anastrephae (Viereck) is a widespread and sometimes common opiine braconid parasitoid of several pest Anastrepha spp. Despite its host range, distribution and abundance, it has attracted relatively little research and little is known of its chemical ecology. Its orientation was determined towards two chemical cues hypothesised to be useful at two spatial scales: (1) limonene derived from fruit is presumably abundant and widely dispersed and might identify from a distance patches of potentially host-containing fruit; and (2) para-ethylacetophenone (PEA), a volatile emitted by a number of tephritid larvae, presumably in relatively small amounts, and which could serve as short-range cue or oviposition stimulant. Various concentrations of limonene proved attractive to both females and males, perhaps to the later as a means of locating females accumulated in the vicinity of limonene-emitting host plants. PEA at the concentrations tested did not influence oviposition in U. anastrephae, although it did so for Diachasmimorpha longicaudata (Ashmead), another opiine tephritid parasitoid, previously known to respond to PEA and included in the experiment as a positive control. Limonene at the concentrations tested had no effect on oviposition in either species. These results advance efforts to synthesise attractants and oviposition stimulants for alternative candidates for augmentation such as U. anastrephae.  相似文献   

2.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is the most recent of four tephritid fruit fly species accidentally introduced into Hawaii. Although parasitoids have been released against other tephritid fruit fly species and have shown partial success in Hawaii, no parasitoids were released until 2004 to suppress populations of B. latifrons. The present study was conducted to document the parasitoid complex that has naturally established against B. latifrons in Hawaii and to assess whether there is a need for improving the biological control of this species. Based on ripe turkeyberry (Solanum torvum Sw) fruit collections over three consecutive years B. latifrons was the dominant tephritid fruit fly infestating turkeyberry at all four sites surveyed, across three major islands in Hawaii. The overall percentage parasitism of B. latifrons ranged from a low of 0.8% (Hana, Maui) to a high of 8.8% (Kahaluu, Oahu). Five primary parasitoid species were recovered from individually held B. latifrons puparia: Fopius arisanus (Sonan), Psyttalia incisi (Silvestri), Diachasmimorpha longicaudata (Ashmead), D. tryoni (Cameron), and Tetrastichus giffardianus Silvestri. F. arisanus was the predominant parasitoid at three of the four sites. Low levels of parasitism suggest that there is a need to improve biological control of B. latifrons, to minimize chances of this species causing economic impacts on crop production in Hawaii. We discuss the possibility of improving biological control of B. latifrons through augmentative releases of F. arisanus or introduction and release of specific and efficient new parasitoid species.  相似文献   

3.
Bracoviruses are used by parasitoid wasps to allow development of their progeny within the body of lepidopteran hosts. In parasitoid wasps, the bracovirus exists as a provirus, integrated in a wasp chromosome. Viral replication occurs in wasp ovaries and leads to formation of particles containing dsDNA circles (segments) that are injected into the host body during wasp oviposition. We identified a large DNA transposon Maverick in a parasitoid wasp bracovirus. Closely related elements are present in parasitoid wasp genomes indicating that the element in CcBV corresponds to the insertion of an endogenous wasp Maverick in CcBV provirus. The presence of the Maverick in a bracovirus genome suggests the possibility of transposon transfers from parasitoids to lepidoptera via bracoviruses.  相似文献   

4.
Host acceptability and suitability Psyttalia concolor (Szépligeti) is a koinobiont, larval parasitoid of tephritid fruit flies. Individuals of P. concolor were field-collected from coffee in the central highlands of Kenya, and cultured initially on Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). They were then examined for their ability to oviposit in and develop on five other tephritid species that are pests in Kenya. In addition to the medfly, acceptability for oviposition and suitability for development were tested against the mango fruit fly, Ceratitis cosyra (Walker), the Natal fruit fly, Ceratitis rosa Karsch, Ceratitis fasciventris (Bezzi), Ceratitis anonae Graham and the melon fruit fly, Bactrocera cucurbitae (Coquillett). Ceratitis capitata and C. cosyra were accepted as hosts significantly more often than the other species. Superparasitism was recorded only from C. capitata and C. cosyra. Two days after oviposition, parasitoid eggs in C. fasciventris and B. cucurbitae were encapsulated, whereas those in C. rosa and C. anonae were encapsulated, and often melanized. Ceratitis capitata was the most suitable host for Kenyan populations of Psyttalia concolor in terms of progeny production, and proportion of female progeny.  相似文献   

5.
6.
  • 1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts.
  • 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively.
  • 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato.
  • 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae.
  • 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present.
  • 6 We conclude that herbivore‐induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly‐identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
  相似文献   

7.
Parasitism may explain the patchy distributions of host populations. The present paper is a study of larval distributions of the parasitoid Eurytoma robusta in galls of the tephritid gall fly Urophora cardui. It focuses on E. robusta's choice of U. cardui gall and whether this changes relative to the rate of parasitism. Oviposition patterns were inferred by direct counts of larvae in galls and genetically, for both species, using indirect relatedness estimates between gall‐members. Furthermore, rates of parasitism in four populations were monitored for 4 years. The modal distribution of E. robusta larvae per gall was one and independent of the level of parasitism. The mean number of E. robusta per gall did not differ from Poisson distributions at different parasitism rates. We were not able to demonstrate a parasitoid preference for gall size. In contrast, parasitoids may have a negative effect on gall growth. Relatedness estimates showed that E. robusta gall members were often unrelated, whereas U. cardui were siblings. Thus, larval distributions of E. robusta suggest that oviposition behaviour is generally constrained and density independent. In four populations monitored over 4 years, parasitism was initially high (up to 70%), but suddenly declined with no apparent effect on fly (gall) abundance.  相似文献   

8.
The flight response of Cotesia kariyaiWatanabe (Hymenoptera: Braconidae), a parasitoid of the polyphagous herbivore, Mythimna separataWalker (Lepidoptera: Noctuidae), to pairs of different plant species infested by M. separatalarvae was tested under a dual choice condition in the laboratory. The oviposition-inexperienced (naive) wasps showed preference in the order: corn > kidney bean > Japanese radish. Wasps that had previously oviposited on the less preferred plant in a pair were found to have shifted their preference to this plant at 2 h after oviposition. However, this shift became indistinct at 17 h after oviposition. Prior oviposition on a plant species other than those being compared also affected the preference. These data suggest that learning is involved in the wasp's flight response. Prior oviposition was also observed to have an effect on the antennal searching behavior of the wasp on corn leaves. Such behavioral plasticity may enhance the efficiency by which C. kariyaisearches for polyphagous hosts.  相似文献   

9.
Fopius arisanus is a polyphagous parasitoid of Tephritidae, which has been recently introduced to La Réunion Island as part of a classical biological control programme. We carried out laboratory experiments to assess the host specificity of this parasitoid, initially reared on Bactrocera zonata, and then offered for parasitization the eight local tephritid pest species. Naive or experienced parasitoid females were given tephritid eggs in no choice tests. Fopius arisanus females parasitize all fly species but parasitism varies with host species. No adult wasps emerge from Bactrocera cucurbitae and the survival of this species is only slightly affected by parasitism. Dissections show that the late instars of this fly may eliminate the parasitoid by encapsulation. When developing on Ceratitis capitata, Ceratitis rosa, Dacus ciliatus, Dacus demmerezi, and Neoceratitis cyanescens, parasitoid survival rate ranges from 10 to 25%. Bactrocera zonata and Ceratitis catoirii are the best hosts, yielding parasitoid survival rates of more than 70% with no premature mortality. The egg-larval mortality of C. capitata, C. rosa, D. ciliatus, and N. cyanescens, and the pupal mortality of D. demmerezi, are significantly increased by parasitism. The size of emerging adults is affected by host species and is correlated to pupal weight. Bactrocera zonata would be a favorable host to support routine colonization of F. arisanus for mass production of this parasitoid.  相似文献   

10.
The reproductive compatibility between four different species/populations of the tephritid parasitoid Psyttalia (Walker) species from Kenya and individuals of the morphologically identical Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) from a laboratory culture in Italy used in augmentative biological control of olive fly, Bactrocera oleae (Gmelin) (Diptera: Tephritidae) was assessed through cross mating tests using single-pair and group mating methods. Reciprocal crosses among the species resulted in the production of viable offsprings up to the second generation. In spite of the successful production of viable offspring in the laboratory, Psyttalia species are known to have specific host fruit and/or host fly preferences and populations/species may be isolated in one way or the other. However, it is not known whether these populations/species interbreed in the field. We discuss the ability of these parasitoids to interbreed and the potential effects of that on their use as biological control agents, especially in environments where other closely related species are present or in situations where multiple parasitoid introductions are intended.  相似文献   

11.
The structure of populations across landscapes influences the dynamics of their interactions with other species. Understanding the geographic structure of populations can thus shed light on the potential for interacting species to co‐evolve. Host–parasitoid interactions are widespread in nature and also represent a significant force in the evolution of plant–insect interactions. However, there have been few comparisons of population structure between an insect host and its parasitoid. We used microsatellite markers to analyse the population genetic structure of Pleistodontes imperialis sp. 1, a fig‐pollinating wasp of Port Jackson fig (Ficus rubiginosa), and its main parasitoid, Sycoscapter sp. A, in eastern Australia. Besides exploring this host–parasitoid system, our study also constitutes, to our knowledge, the first study of population structure in a nonpollinating fig wasp species. We collected matched samples of pollinators and parasitoids at several sites in two regions separated by up to 2000 km. We found that pollinators occupying the two regions represent distinct populations, but, in contrast, parasitoids formed a single population across the wide geographic range sampled. We observed genetic isolation by distance for each species, but found consistently lower FST and RST values between sites for parasitoids compared with pollinators. Previous studies have indicated that pollinators of monoecious figs can disperse over very long distances, and we provide the first genetic evidence that their parasitoids may disperse as far, if not farther. The contrasting geographic population structures of host and parasitoid highlight the potential for geographic mosaics in this important symbiotic system.  相似文献   

12.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4‐day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae‐larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

13.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4-day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae-larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

14.
The prevalent way aphids accomplish colony defense against natural enemies is a mutualistic relationship with ants or the occurrence of a specialised soldier caste typcial for eusocial aphids, or even both. Despite a group-living life style of those aphid species lacking these defense lines, communal defense against natural predators has not yet been observed there. Individuals of Aphis nerii (Oleander aphid) and Uroleucon hypochoeridis, an aphid species feeding on Hypochoeris radicata (hairy cat''s ear), show a behavioral response to visual stimulation in the form of spinning or twitching, which is often accompanied by coordinated kicks executed with hind legs. Interestingly, this behaviour is highly synchronized among members of a colony and repetitive visual stimulation caused strong habituation. Observations of natural aphid colonies revealed that a collective twitching and kicking response (CTKR) was frequently evoked during oviposition attempts of the parasitoid wasp Aphidius colemani and during attacks of aphidophagous larvae. CTKR effectively interrupted oviposition attempts of this parasitoid wasp and even repelled this parasitoid from colonies after evoking consecutive CTKRs. In contrast, solitary feeding A. nerii individuals were not able to successfully repel this parasitoid wasp. In addition, CTKR was also evoked through gentle substrate vibrations. Laser vibrometry of the substrate revealed twitching-associated vibrations that form a train of sharp acceleration peaks in the course of a CTKR. This suggests that visual signals in combination with twitching-related substrate vibrations may play an important role in synchronising defense among members of a colony. In both aphid species collective defense in encounters with different natural enemies was executed in a stereotypical way and was similar to CTKR evoked through visual stimulation. This cooperative defense behavior provides an example of a surprising sociality that can be found in some aphid species that are not expected to be social at all.  相似文献   

15.
The gregarious, ectoparasitoidNasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) was offered pupae representing seven fly species, but only members of two families (Sarcophagidae and Muscidae) were parasitized. Host acceptance as an oviposition site did not imply host suitability for parasitoid growth:N. vitripennis produced fewer progeny, a higher proportion of males, required a longer development time, and produced smaller adult wasps onMusca domestica L. (Diptera: Muscidae) than on the three sarcophagid species tested [Sarcophaga bullata Parker,S. crassipalpis Macquart, andPeckia abnormis (Enderlein) (Diptera: Sarcophagidae)]. The physiological and nutritional status of a preferred host,S. bullata, influenced oviposition behavior and development ofN. vitripennis. Progeny allocation and sex ratio, which were regulated by the female parasitoid during oviposition, differed on living and dead nondiapausing hosts and on diapausing pupae. Differences in the host's nutritional condition was reflected in changes of the wasp's development time and adult body size. Envenomation was essential for successful development of the parasitoid on nondiapausing hosts, but venom injection byN. vitripennis did not increase the suitability of diapausing or dead pupae. The results suggest that wasp development is enhanced by changes induced in the host by parasitism.  相似文献   

16.
The densities of conspecific individuals may vary through space, especially at the edge of species range. This variation in density is predicted to influence the diffusion of species‐specific horizontally transmitted symbionts. However, to date there is very little data on how parasite prevalence varies around the border of a host species. Using a molecular epidemiology approach, we studied the prevalence of a vertically and horizontally transmitted virus at the edge of the geographic range of its insect host, the Drosophila parasitoid wasp Leptopilina boulardi. L. boulardi is a Mediterranean parasitoid species showing a recent range expansion to the north (in France). The LbFV virus manipulates the behaviour of females, increasing their tendency to lay additional eggs in already parasitized Drosophila larvae (superparasitism). This is beneficial for the virus because it allows the virus to be horizontally transferred during superparasitism. We show that LbFV prevalence is very high in central populations, intermediate in marginal populations and almost absent from newly established peripheral populations of L. boulardi. We failed to detect any influence of temperature and diapause on viral transmission efficiency but we observed a clear relationship between prevalence and parasitoid density, and between parasitoid density and the occurrence of superparasitism, as predicted by our epidemiological model. Viral strains were all efficient at inducing the behavioural manipulation and viral gene sequencing revealed very low sequence variation. We conclude that the prevalence reached by the virus critically depends on density‐dependent factors, i.e. superparasitism, underlying the selective pressures acting on the virus to manipulate the behaviour of the parasitoid.  相似文献   

17.
Although ovipositing insects may predominantly use resources that lead to high offspring quality, exceptions to this rule have considerably aided understanding of oviposition decisions. We report the frequency of host species use by a solitary facultative hyperparasitoid, Brachymeria subrugosa Blanchard (Hymenoptera: Chalcididae). In our samples, the wasp attacks the large pupae of the moth Gonioterma indecora Zeller (Lepidoptera: Elachistidae), as well as the considerably smaller, and rarer, pupae of two of its other parasitoids. Consistent with conditional sex allocation models, the wasp produced mainly female offspring on the largest (moth) host, an unbiased sex ratio on the middle‐sized (parasitoid) host, and only males on the smallest (parasitoid) host. Adult offspring size was correlated with the size of the host attacked. These features strongly suggest that the two smaller, primary parasitoid, hosts produce lower‐quality offspring. Despite being more common, the proportion of hosts from which parasitoids emerged was lowest (14%) on the largest host species, and highest on the rarer middle‐sized (34%) and smallest (30%) hosts. This suggests that costs or constraints on attacking high‐quality primary hosts may be a selective force favouring the evolution of hyperparasitism.  相似文献   

18.
Among Tephritidae flies, the females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. In the olive fruit fly, Bactrocera oleae, female-female aggressive interactions are characterized by reciprocal wing waving, chasing, head butting and boxing with forelegs. Little is known on tephritid aggressive behaviors directed towards natural enemies, with special reference to parasitoids attacking their young instars. In this study, we quantified the aggressive behavior of B. oleae females guarding their oviposition site against the braconid parasitoid Psyttalia concolor. The fly aggressive behavior displayed against the parasitoids was compared that directed towards paper dummies mimicking P. concolor adults. When a P. concolor female came close (<20 mm) to a B. oleae female guarding the oviposition site, the 91.67% of the flies displayed wing-waving, the 63.34% chased the parasitoid, the 45% showed head-butting, while boxing was observed only in the 26.67% of the aggressions. When paper dummies were tested, only the 66.67% of the flies displayed wing-waving, the 8.33% performed chasing, followed by head butting (5.00%) and boxing (3.33%). B. oleae displayed longer aggression bouts towards live wasps over dummies. Overall, this is the first evidence pointing out that tephritid aggressive acts, besides their role in intraspecific interactions, were also highly effective to displace parasitic wasps from the fly oviposition site. Further research on potential consequences on fitness traits arising from the above-discussed behaviors, as well as on parasitoid learning-mediated responses to tephritid aggressions, is urgently required.  相似文献   

19.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

20.
The solitary endoparasitoid, Microplitis rufiventris, attacks and can develop in earlier instars of Spodoptera littoralis larvae with preference to third‐instar larvae. We used the last stadium (sixth instar), a stage which is not naturally parasitized. The newly moulted larvae (0–3 h old) of this stadium were more acceptable for parasitization by the wasp females than the older ones (24 h old). Parasitization by M. rufiventris wasp of last instar S. littoralis larvae leads to dose (no. of eggs + parasitoid factors)‐dependent effects which were more pronounced at 20°C than at 27°C. A single oviposition into a sixth instar host larva resulted in normal development of the host. However, superparasitization increased the proportions of developmentally arrested hosts and number of live wasp larvae. Development of supernumerary individuals of the parasitoid in the host larva leads to dose‐related adverse effects on host growth and development. The present study may provide interesting opportunities for studying the physiological bases of host–parasitoid interactions and parasitoid intra‐specific competition in the biological system considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号