首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Convergent evolution in similar environments constitutes strong evidence of adaptive evolution. Transported with people around the world, house mice colonized even remote areas, such as Sub‐Antarctic islands. There, they returned to a feral way of life, shifting towards a diet enriched in terrestrial macroinvertebrates. Here, we test the hypothesis that this triggered convergent evolution of the mandible, a morphological character involved in food consumption. Mandible shape from four Sub‐Antarctic islands was compared to phylogeny, tracing the history of colonization, and climatic conditions. Mandible shape was primarily influenced by phylogenetic history, thus discarding the hypothesis of convergent evolution. The biomechanical properties of the jaw were then investigated. Incisor in‐lever and temporalis out‐lever suggested an increase in the velocity of incisor biting, in agreement with observations on various carnivorous and insectivorous rodents. The mechanical advantage related to incisor biting also revealed an increased functional performance in Sub‐Antarctic populations, and appears to be an adaptation to catch prey more efficiently. The amount of change involved was larger than expected for a plastic response, suggesting microevolutionary processes were evolved. This study thus denotes some degree of adaptive convergent evolution related to changes in habitat‐related changes in dietary items in Sub‐Antarctic mice, but only regarding simple, functionally relevant aspects of mandible morphology.  相似文献   

2.
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest‐building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life‐cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large‐scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.  相似文献   

3.
4.
The influence of the environment on the geographical variation of morphological traits has been recognized in a number of taxa. Pecari tajacu and Tayassu pecari are ideal models to investigate intraspecific geographic variation in skull because of their wide and heterogeneous geographical distribution in South America. We used geometric morphometric procedures to examine the geographical variation in skull shape of 294 adult specimens of these species from 134 localities. We quantified to what extent skull shape variation was explained by environment, skull size and geographical space using variation partitioning analysis. We detected a strong pattern of geographic variation for P. tajacu skull shape, but not for T. pecari. The environment seems to be the major selective force that drives skull shape variation in both species. Nevertheless, other spatially structured processes (e.g. genetic drift, gene flow) might also have affected variation in the skull shape of the more widespread species P. tajacu. Allometric relationships might reflect the biomechanical constraints that are thought to be strong enough to limit size‐related changes in T. pecari skull shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号