共查询到20条相似文献,搜索用时 15 毫秒
1.
This study depicts how captive kea, New Zealand parrots, which are not known to use tools in the wild, employ a stick-tool to retrieve a food reward after receiving demonstration trials. Four out of six animals succeeded in doing so despite physical (beak curvature) and ecological (no stick-like materials used during nest construction) constraints when handling elongated objects. We further demonstrate that the same animals can thereafter direct the functional end of a stick-tool into a desired direction, aiming at a positive option while avoiding a negative one. 相似文献
2.
James J. H. St Clair Christian Rutz 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1630)
The ability to attend to the functional properties of foraging tools should affect energy-intake rates, fitness components and ultimately the evolutionary dynamics of tool-related behaviour. New Caledonian crows Corvus moneduloides use three distinct tool types for extractive foraging: non-hooked stick tools, hooked stick tools and tools cut from the barbed edges of Pandanus spp. leaves. The latter two types exhibit clear functional polarity, because of (respectively) a single terminal, crow-manufactured hook and natural barbs running along one edge of the leaf strip; in each case, the ‘hooks’ can only aid prey capture if the tool is oriented correctly by the crow during deployment. A previous experimental study of New Caledonian crows found that subjects paid little attention to the barbs of supplied (wide) pandanus tools, resulting in non-functional tool orientation during foraging. This result is puzzling, given the presumed fitness benefits of consistently orienting tools functionally in the wild. We investigated whether the lack of discrimination with respect to (wide) pandanus tool orientation also applies to hooked stick tools. We experimentally provided subjects with naturalistic replica tools in a range of orientations and found that all subjects used these tools correctly, regardless of how they had been presented. In a companion experiment, we explored the extent to which normally co-occurring tool features (terminal hook, curvature of the tool shaft and stripped bark at the hooked end) inform tool-orientation decisions, by forcing birds to deploy ‘unnatural’ tools, which exhibited these traits at opposite ends. Our subjects attended to at least two of the three tool features, although, as expected, the location of the hook was of paramount importance. We discuss these results in the context of earlier research and propose avenues for future work. 相似文献
3.
4.
5.
Naturalistic studies on tool use by nonhuman primates have focused almost exclusively on Old World monkeys or hominoids. We studied the cracking of Syagrus nuts with the aid of stones by a group of semifree-ranging capuchins living in a reforested area (Tietê Ecological Park, São Paulo, Brazil). Our data are from direct observation and from mapping nut-cracking site utilization. All adults, subadults and juveniles (plus one infant) crack nuts, but individual differences in frequency and proficiency are marked. Juveniles do most of the nut-cracking, but adults are, on average, more efficient; the frequency of inept stone manipulation decreases with age. About 10% of the nut-cracking episodes were watched by other individuals—mostly infants and juveniles, suggesting a role for observational learning, even if restricted to stimulus enhancement. 相似文献
6.
7.
A. M. I. Auersperg A. M. I. von Bayern S. Weber A. Szabadvari T. Bugnyar A. Kacelnik 《Proceedings. Biological sciences / The Royal Society》2014,281(1793)
Tool use can be inherited, or acquired as an individual innovation or by social transmission. Having previously reported individual innovative tool use and manufacture by a Goffin cockatoo, we used the innovator (Figaro, a male) as a demonstrator to investigate social transmission. Twelve Goffins saw either demonstrations by Figaro, or ‘ghost’ controls where tools and/or food were manipulated using magnets. Subjects observing demonstrations showed greater tool-related performance than ghost controls, with all three males in this group (but not the three females) acquiring tool-using competence. Two of these three males further acquired tool-manufacturing competence. As the actions of successful observers differed from those of the demonstrator, result emulation rather than high-fidelity imitation is the most plausible transmission mechanism. 相似文献
8.
9.
10.
Lauren M. Guillette Alice C. Y. Scott Susan D. Healy 《Proceedings. Biological sciences / The Royal Society》2016,283(1827)
It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influence how nest-building expertise is socially transmitted in zebra finches. 相似文献
11.
Oren Kolodny Shimon Edelman Arnon Lotem 《Proceedings. Biological sciences / The Royal Society》2015,282(1811)
The skills required for the learning and use of language are the focus of extensive research, and their evolutionary origins are widely debated. Using agent-based simulations in a range of virtual environments, we demonstrate that challenges of foraging for food can select for cognitive mechanisms supporting complex, hierarchical, sequential learning, the need for which arises in language acquisition. Building on previous work, where we explored the conditions under which reinforcement learning is out-competed by seldom-reinforced continuous learning that constructs a network model of the environment, we now show that realistic features of the foraging environment can select for two critical advances: (i) chunking of meaningful sequences found in the data, leading to representations composed of units that better fit the prevalent statistical patterns in the environment; and (ii) generalization across units based on their contextual similarity. Importantly, these learning processes, which in our framework evolved for making better foraging decisions, had been earlier shown to reproduce a range of findings in language learning in humans. Thus, our results suggest a possible evolutionary trajectory that may have led from basic learning mechanisms to complex hierarchical sequential learning that can support advanced cognitive abilities of the kind needed for language acquisition. 相似文献
12.
13.
Ana F. Navarrete Simon M. Reader Sally E. Street Andrew Whalen Kevin N. Laland 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1690)
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. 相似文献
14.
E. J. M. Meulman A. M. Seed J. Mann 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1630)
Many species use tools, but the mechanisms underpinning the behaviour differ between species and even among individuals within species, depending on the variants performed. When considering tool use ‘as adaptation’, an important first step is to understand the contribution made by fixed phenotypes as compared to flexible mechanisms, for instance learning. Social learning of tool use is sometimes inferred based on variation between populations of the same species but this approach is questionable. Specifically, alternative explanations cannot be ruled out because population differences are also driven by genetic and/or environmental factors. To better understand the mechanisms underlying routine but non-universal (i.e. habitual) tool use, we suggest focusing on the ontogeny of tool use and individual variation within populations. For example, if tool-using competence emerges late during ontogeny and improves with practice or varies with exposure to social cues, then a role for learning can be inferred. Experimental studies help identify the cognitive and developmental mechanisms used when tools are used to solve problems. The mechanisms underlying the route to tool-use acquisition have important consequences for our understanding of the accumulation in technological skill complexity over the life course of an individual, across generations and over evolutionary time. 相似文献
15.
Quentin Gallot Thibaud Gruber 《Ethology : formerly Zeitschrift fur Tierpsychologie》2019,125(10):755-758
Here, we report an observation of a zoo‐housed common raven (Corvus corax) modifying and using a raven feather as a tool to access the food cache of her partner. We believe this record is of importance, as it represents one of the first cases of untrained common ravens spontaneously using and modifying a tool, and a rare example of a non‐human animal manufacturing a tool from a body part. This anecdotal observation suggests that tool use and tool modification may be present in the common raven behavioral repertoire in the foraging context; nevertheless, further investigations are needed to assess this possibility in more controlled settings as well as in the wild. 相似文献
16.
17.
Michael D. Gumert Suchinda Malaivijitnond 《American journal of physical anthropology》2012,149(3):447-457
Long‐tailed macaques (Macaca fascicularis) feed opportunistically in many habitats. The Burmese subspecies (M. f. aurea) inhabits coastal areas in southwestern Thailand and Myanmar, and some of their populations have adapted lithic customs for processing encased foods in intertidal habitats. We investigated the diet of such macaques in Laemson National Park, Thailand, and identified the variety of foods they processed with stones. We conducted 36 shore surveys to study tool sites following feeding activity, during which we counted the minimum number of individual (MNI) food items found at each site. We identified 47 food species (43 animals and four plants), from 37 genera. We counted 1,991 food items during surveys. Nearly all were mollusks (n = 1,924), with the small remainder primarily consisting of crustaceans and nuts. The two most common foods, rock oysters (Saccostrea cucullata; n = 1,062) and nerite snails (Nerita spp.; n = 538), composed 80.2% of our sample. Four prey species comprised 83.2% of the sample (MNI = 1,656), S. cucullata (n = 1,062), Nerita chamaeleon (n = 419), Thais bitubercularis (n = 95), and Monodonta labio (n = 80). Macaques selected a wide variety of foods. However, they heavily concentrated on those that were abundant, easy to access, and sufficiently sized. The Burmese long‐tailed macaque stone‐processed diet, which focuses on intertidal marine prey, differs from Sapajus and Pan, who use stones primarily for encased nuts and fruits. In terms of diversity of foods exploited, coastal stone‐based predation by macaques resembles the diet of coastal‐foraging humans (Homo sapiens sapiens). Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
18.
19.
Parrots are frequently cited for their sophisticated problem-solving abilities, but cases of habitual tool use among psittacines are scarce. We report the first evidence, to our knowledge, of tool use by greater vasa parrots (Coracopsis vasa). Several members of a captive population spontaneously adopted a novel tool-using technique by using pebbles and date pits either (i) to scrape on the inner surface of seashells, subsequently licking the resulting calcium powder from the tool, or (ii) as a wedge to break off smaller pieces of the shell for ingestion. Tool use occurred most frequently just prior to the breeding season, during which time numerous instances of tool transfer were also documented. These observations provide new insights into the tool-using capabilities of parrots and highlight the greater vasa parrot as a species of interest for studies of physical cognition. 相似文献
20.
Tom V. Smulders Kristy L. Gould Lisa A. Leaver 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1542):883-900
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too simplistic to predict that all scatter-hoarding animals will outperform non-hoarding animals on all tests of spatial memory. Instead, we argue that we should look at the detailed ecology and natural history of each species. This understanding of natural history then allows us to make predictions about which aspects of spatial memory should be better in which species. We use the natural hoarding behaviour of the three best-studied groups of scatter-hoarding animals to make predictions about three aspects of their spatial memory: duration, capacity and spatial resolution, and we test these predictions against the existing literature. Having laid out how ecology and natural history can be used to predict detailed cognitive abilities, we then suggest using this approach to guide the study of the neural basis of these abilities. We believe that this complementary approach will reveal aspects of memory processing that would otherwise be difficult to discover. 相似文献