首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Epithelial–mesenchymal transition (EMT) is associated with metastasis formation, generation and maintenance of cancer stem cells (CSCs). However, the regulatory mechanisms of CSCs have not been clarified. This study aims to investigate the role of TNF receptor‐associated factor 6 (TRAF6) on EMT and CSC regulation in squamous cell carcinoma of head and neck (SCCHN). We found TRAF6 was overexpressed in human SCCHN tissues, and high TRAF6 expression was associated with lymphatic metastasis and resulted in poor prognosis in patients with SCCHN. In addition, elevated TRAF6 expression was observed in several HNSCC cell lines, and wound healing and transwell assay results showed that TRAF6 knockdown inhibited the migration and invasion ability of the SCCHN cells. Moreover, the expression of Vimentin, Slug and N‐cadherin was down‐regulated and that of E‐cadherin was elevated after TRAF6 knockdown but decreased by transforming growth factor beta 1 (TGF‐β1) and CAL27 similar to mesenchymal cells formed after TGF‐β1 induction. In addition, the expression levels of CD44, ALDH1, KLF4 and SOX2 were inhibited after TRAF6 knockdown, and the anchor‐dependent colony formation number and sphere number were remarkably reduced. Flow cytometry showed TRAF6 knockdown reduced ALDH1‐positive cancer stem cells. We also demonstrated that TRAF6 is closely associated with EMT process and cancer stem cells using a Tgfbr1/Pten 2cKO mice SCCHN model and human SCCHN tissue microarray. Our findings indicate that TRAF6 plays a role in EMT phenotypes, the generation and maintenance of CSCs in SCCHN, suggesting that TRAF6 is a potential therapeutic target for SCCHN.  相似文献   

4.
In flowering plants, male germline fate is determined after asymmetric division of the haploid microspore. Daughter cells have distinct fates: the generative cell (GC) undergoes further mitosis to generate sperm cells (SCs), and the vegetative cell (VC) terminally differentiates. However, our understanding of the mechanisms underlying germline development remains limited. Histone variants and modifications define chromatin states, and contribute to establishing and maintaining cell identities by affecting gene expression. Here, we constructed a lily protein database, then extracted and detailed histone entries into a comprehensive lily histone database. We isolated large amounts of nuclei from VCs, GCs and SCs from lily, and profiled histone variants of all five histone families in all three cell types using proteomics approaches. We revealed 92 identities representing 32 histone variants: six for H1, 11 for H2A, eight for H2B, five for H3 and two for H4. Nine variants, including five H1, two H2B, one H3 and one H4 variant, specifically accumulated in GCs and SCs. We also detected H3 modification patterns in the three cell types. GCs and SCs had almost identical histone profiles and similar H3 modification patterns, which were significantly different from those of VCs. Our study also revealed the presence of multiple isoforms, and differential expression patterns between isoforms of a variant. The results suggest that differential histone programs between the germline and companion VCs may be established following the asymmetric division, and are important for identity establishment and differentiation of the male germline as well as the VC.  相似文献   

5.
Mitochondrial dynamics and functionality are linked to the autophagic degradative pathway under several stress conditions. However, the interplay between mitochondria and autophagy upon cell death signalling remains unclear. The T‐cell receptor pathway signals the so‐called activation‐induced cell death (AICD) essential for immune tolerance regulation. Here, we show that this apoptotic pathway requires the inhibition of macroautophagy. Protein kinase‐A activation downstream of T‐cell receptor signalling inhibits macroautophagy upon AICD induction. This leads to the accumulation of damaged mitochondria, which are fragmented, display remodelled cristae and release cytochrome c, thereby driving apoptosis. Autophagy‐forced reactivation that clears the Parkin‐decorated mitochondria is as effective in inhibiting apoptosis as genetic interference with cristae remodelling and cytochrome c release. Thus, upon AICD induction regulation of macroautophagy, rather than selective mitophagy, ensures apoptotic progression.  相似文献   

6.
Nicotiana tabacum suspension cells have been widely used to produce monoclonal antibodies, but the yield of secreted antibodies is usually low probably because of proteolytic degradation. Most IgGs that have been expressed in suspension cells have been of the human IgG1 isotype. In this study, we examined whether other isotypes displayed the same sensitivity to proteolytic degradation and whether the choice of plant host species mattered. Human serum IgG displayed different degradation profiles when incubated in spent culture medium from N. tabacum, Nicotiana benthamiana or Arabidopsis thaliana suspension cells. Zymography showed that the protease profile was host species dependent. Three human isotypes, IgG1, IgG2 and IgG4, and a mouse IgG2a were provided with the same heavy‐ and light‐chain variable regions from an anti‐human IgM antibody and expressed in N. tabacum cv. BY‐2 and A. thaliana cv. Col‐0 cells. Although all tested isotypes were detected in the extracellular medium using SDS‐PAGE and a functional ELISA, up to 10‐fold differences in the level of intact antibody were found according to the isotype expressed, to the host species and to the culture conditions. In the best combination (BY‐2 cells secreting human IgG1), we reported accumulation of more than 30 mg/L of intact antibody in culture medium. The possibility of using IgG constant regions as a scaffold to allow stable accumulation of antibodies with different variable regions was demonstrated for human IgG2 and mouse IgG2a.  相似文献   

7.
Coral planulae are induced to settle and metamorphose by contact with either crustose coralline algae or marine bacterial biofilms. Larvae of two coral species, Pocillopora damicornis and Montipora capitata, which respond to different metamorphic cues, were utilized to investigate the sensory mechanisms used to detect metamorphic cues. Because the aboral pole of the coral planula is the point of attachment to the substratum, we predicted that it is also the point of detection for cues. To determine where sensory cells for cues are localized along the body, individual larvae were transversely cut into oral and aboral portions at various levels along the oral–aboral axis, and exposed to settlement‐inducing substrata. Aboral ends of M. capitata metamorphosed, while oral ends continued to swim. However, in larvae of P. damicornis, ¾ oral ends (i.e., lacking the aboral pole) were also able to metamorphose, indicating that the cells that detect cues may be distributed along the sides of the body. These cells do not correspond to FMRFamide‐immunoreactive cells that are present throughout the body. Cesium ions induced both aboral and oral ends of larvae of both species to settle, suggesting that oral ends have not lost their capacity to metamorphose, despite lacking sensory cells to detect natural cues. To determine whether sensory cells in larvae of P. damicornis are restricted to one side of the body, swimming behavior over substrata was observed in larvae labeled with diI, a red fluorescent lipophilic membrane stain. The larvae were found to rotate around the oral–aboral axis, with their surface against the substratum, not favoring a particular side for detecting cues. While clarifying the regions of the larval body important for settlement and metamorphosis in coral planulae, we conclude that significant differences between coral species may be due to differences in the distribution of sensory structures in relation to different planular sizes.  相似文献   

8.
9.
The long‐term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin?Sca‐1+ CD49f+ Trop2high‐phenotype) and human (Lin? CD49f+ TROP2high) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti‐human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single‐cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f+/TROP2high phenotype of basal prostate progenitor cells and characterized by in vivo sandwich‐transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9+/CD24+/CD29+/CD44+/CD47+/CD49f+/CD104+/CD147+/CD326+/Trop2high of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan‐1 and stage‐specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f+ TROP2+ basal prostate progenitor cells. Transplantation experiments suggest that CD49f+ TROP2high SSEA‐4high human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f+ TROP2high or CD49f+ TROP2high SSEA‐4low cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA‐4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage.  相似文献   

10.
Our previous studies demonstrated that high mobility group box‐1 (HMGB1), a typical damage‐associated molecular pattern (DAMP) protein, is associated with the disease activity of antineutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV). Moreover, HMGB1 participates in ANCA‐induced neutrophil activation. The current study aimed to investigate whether HMGB1 regulated the interaction between neutrophils and glomerular endothelial cells (GEnC) in the presence of ANCA. Correlation analysis on HMGB1 levels in AAV patients and soluble intercellular cell adhesion molecule‐1 (sICAM‐1) levels or vascular endothelial growth factor (VEGF) levels, which are markers of endothelial cell activation, was performed. The effect of HMGB1 on neutrophil migration towards GEnC, respiratory burst and degranulation of neutrophils in coculture conditions with GEnC was measured. The activation of neutrophils, the activation and injury of GEnC, and the consequent pathogenic role of injured GEnC were evaluated. Plasma levels of HMGB1 correlated with sICAM‐1 and VEGF (r = 0.73, P < 0.01; r = 0.41, P = 0.04) in AAV patients. HMGB1 increased neutrophil migration towards GEnC, as well as respiratory burst and degranulation of neutrophils in the presence of ANCA in the coculture system. In the presence of robust neutrophil activation, GEnC were further activated and injured in the coculture system of GEnC and neutrophils. In addition, injured GEnC could produce TF‐positive leuco‐endothelial microparticles and endothelin‐1 (ET‐1), while NF‐κB was phosphorylated (S529) in the injured GEnC. Plasma levels of HMGB1 correlated with endothelial cell activation in AAV patients. HMGB1 amplified neutrophil activation and the activation and injury of GEnC in the presence of ANCA.  相似文献   

11.
12.

Objectives

The aim of this study was to investigate whether sclerostin (SOST) regulates the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs) and whether SOST and low‐affinity nerve growth factor receptor (LNGFR) regulate the osteogenic differentiation of EMSCs.

Materials and methods

EMSCs were isolated from embryonic facial processes from an embryonic 12.5‐day (E12.5d) pregnant Sprague‐Dawley rat. LNGFR+ EMSCs and LNGFR? EMSCs were obtained by fluorescence‐activated cell sorting and were subsequently induced to undergo osteogenic differentiation in vitro. SOST/LNGFR small‐interfering RNAs and SOST/LNGFR overexpression plasmids were used to transfect EMSCs.

Results

LNGFR+ EMSCs displayed a higher osteogenic capacity and lower SOST levels compared with LNGFR? EMSCs. SOST silencing enhanced the osteogenic differentiation of LNGFR? EMSCs, while SOST overexpression attenuated the osteogenic differentiation of LNGFR+ EMSCs. Moreover, LNGFR was present upstream of SOST and strengthened the osteogenic differentiation of EMSCs by decreasing SOST.

Conclusions

SOST alleviated the osteogenic differentiation of EMSCs, and LNGFR enhanced the osteogenic differentiation of EMSCs by decreasing SOST, suggesting that the LNGFR/SOST pathway may be a novel target for promoting dental tissue regeneration and engineering.
  相似文献   

13.
14.
15.
Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. Cell‐replacement therapies have emerged as a promising strategy to slow down or replace neuronal loss. Compared to other stem cell types, endometrium‐derived stem cells (EDSCs) are an attractive source of stem cells for cellular therapies because of their ease of collection and vast differentiation potential. Here we demonstrate that endometrium‐derived stem cells may be transplanted into an MPTP exposed monkey model of PD. After injection into the striatum, endometrium‐derived stem cells engrafted, exhibited neuron‐like morphology, expressed tyrosine hydroxylase (TH) and increased the numbers of TH positive cells on the transplanted side and dopamine metabolite concentrations in vivo. Our results suggest that endometrium‐derived stem cells may provide a therapeutic benefit in the primate model of PD and may be used in stem cell based therapies.  相似文献   

16.
There are significant differences between acetyl‐CoA and ATP levels, enzymes of acetyl‐CoA metabolism, and toll‐like receptor 4 contents in non‐activated microglial N9 and non‐differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration‐dependent several‐fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α‐ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl‐CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl‐CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy‐acetyl‐CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl‐CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll‐like receptors and degree of disequilibrium between acetyl‐CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells.

  相似文献   


17.
The Southern‐fur‐seal belongs to the order Carnivora, suborder Pinnipedia, and Otariidae family. This species inhabits aquatic and terrestrial environments, thus presenting important morphophysiological adaptive changes, especially in the cardiac system. For this purpose, Southern‐fur‐seal (Arctocephalus australis) hearts were used from animals that died from natural causes. Gross morphology observations were supported by light, scanning and transmission electron microscopy. The heart was long and flat; it was lined by pericardium and partly covered by lungs. Structurally, atrium and ventricle muscle fibers exhibit typical features of cardiac fibers revealing myofibrils bundles, mitochondria, plate‐shaped junctions, anastomosis between myofibrils bundles, and electron‐dense granule natriuretic around the nucleus and mitochondria of atrium muscle cells. The Southern‐fur‐seal heart was structurally similar to other mammals; however, it presented morphological changes that assist in their adaptation to their environment.  相似文献   

18.
19.
20.
Tumor necrosis factor (TNF) family cytokines are important mediators of inflammation. Elevated levels of serum TNF‐α are associated with human sensorineural hearing loss via poorly understood mechanisms. We demonstrate, for the first time, expression of TNF‐related apoptosis‐inducing ligand (TRAIL) and its signaling death receptor 5 (DR5) in the murine inner ear and show that exogenous TRAIL can trigger hair cell and neuronal degeneration, which can be partly prevented with DR5‐blocking antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号