首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Social insect castes and sexes differ in many ways, including morphology, behavior, and sometimes ploidy level. Recent studies have found that consuming sunflower pollen reduces the gut pathogen Crithidia bombi in workers of the common eastern bumble bee (Bombus impatiens). Here, this work is extended to the reproductive individuals that represent colony fitness – males and queens – to assess if the medicinal effects of sunflower pollen vary with bee caste and sex. 2. This study examined the effect of sunflower pollen compared to a diverse wildflower pollen mix on infection in worker, male, and daughter queen commercial B. impatiens. Bees were infected, fed either sunflower pollen or wildflower pollen for 7 days, and then infection levels were assessed. 3. Compared to wildflower pollen, sunflower pollen dramatically reduced Crithidia infection in workers and daughter queens, but not males. Infection levels were very low for both diets in males; this could be due to low pollen consumption or other mechanisms. 4. Reducing Crithidia infection in young queens before they undergo hibernation is important for population dynamics since infected queens are less likely to survive hibernation, and those that do are less likely to successfully establish a nest the following spring. Because sunflowers bloom in late summer when new queens are emerging, sunflowers could provide an important dietary component for queens during this critical life stage. Deepening our understanding of how diet impacts pathogens in reproductive bees, as well as workers, is crucial to maintain healthy pollinator populations.  相似文献   

2.
Repeated exposure to inhibitory compounds can drive the evolution of resistance, which weakens chemical defence against antagonists. Floral phytochemicals in nectar and pollen have antimicrobial properties that can ameliorate infection in pollinators, but evolved resistance among parasites could diminish the medicinal efficacy of phytochemicals. However, multicompound blends, which occur in nectar and pollen, present simultaneous chemical challenges that may slow resistance evolution. We assessed evolution of resistance by the common bumble bee gut parasite Crithidia bombi to two floral phytochemicals, singly and combined, over 6 weeks (~100 generations) of chronic exposure. Resistance of C. bombi increased under single and combined phytochemical exposure, without any associated costs of reduced growth under phytochemical‐free conditions. After 6 weeks’ exposure, phytochemical concentrations that initially inhibited growth by > 50%, and exceeded concentrations in floral nectar, had minimal effects on evolved parasite lines. Unexpectedly, the phytochemical combination did not impede resistance evolution compared to single compounds. These results demonstrate that repeated phytochemical exposure, which could occur in homogeneous floral landscapes or with therapeutic phytochemical treatment of managed hives, can cause rapid evolution of resistance in pollinator parasites. We discuss possible explanations for submaximal phytochemical resistance in natural populations. Evolved resistance could diminish the antiparasitic value of phytochemical ingestion, weakening an important natural defence against infection.  相似文献   

3.
Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.  相似文献   

4.
In socially living animals, individuals interact through complex networks of contact that may influence the spread of disease. Whereas traditional epidemiological models typically assume no social structure, network theory suggests that an individual’s location in the network determines its risk of infection. Empirical, especially experimental, studies of disease spread on networks are lacking, however, largely due to a shortage of amenable study systems. We used automated video-tracking to quantify networks of physical contact among individuals within colonies of the social bumble bee Bombus impatiens. We explored the effects of network structure on pathogen transmission in naturally and artificially infected hives. We show for the first time that contact network structure determines the spread of a contagious pathogen (Crithidia bombi) in social insect colonies. Differences in rates of infection among colonies resulted largely from differences in network density among hives. Within colonies, a bee’s rate of contact with infected nestmates emerged as the only significant predictor of infection risk. The activity of bees, in terms of their movement rates and division of labour (e.g., brood care, nest care, foraging), did not influence risk of infection. Our results suggest that contact networks may have an important influence on the transmission of pathogens in social insects and, possibly, other social animals.  相似文献   

5.
1. Bumblebees are important pollinators in North America and are attacked by a range of parasites that impact their fitness; however, few studies have investigated the extent or causes of parasitism in North America. 2. This study used a 2‐year multi‐site survey of bumblebee parasitism to ask: (i) how common are parasitoid conopid flies and the internal parasites Crithidia bombi and Nosema bombi in Massachusetts; and (ii) what factors are correlated with parasitism? 3. Infection rates by all three parasites were higher in this study than previously documented in North America. Overall, conopids infected 0–73% of bees in each sample, C. bombi infected 0–82% of bees, and N. bombi infected 0–32%. 4. Conopid flies infected female bees more than males and intermediate‐sized bees more than large or small bees. Crithidia bombi infection rates were higher in certain bee species and sites, and exhibited a unimodal pattern of prevalence over time. Nosema bombi parasitism was higher in male than female bees. 5. Infection by N. bombi in two rare bumblebee species was higher than expected based on parasitism rates of common bee species but C. bombi infection was lower. If high prevalence of N. bombi in these bumblebee species is common, parasitism may be a potential cause of their decline. 6. Given the documented effects of these parasites, the high levels of infection may affect bee populations in Massachusetts and threaten the stability of their valuable ecosystem services.  相似文献   

6.
The flagellate Crithidia bombi and the neogregarine Apicystis bombi have been found in individuals of Bombus terrestris, a Palaearctic species of bumble bee commercially reared and shipped worldwide for pollination services. B. terrestris has recently entered into the northwestern Patagonia region of Argentina from Chile, where it was introduced in 1998. Prevalence was 21.6% for C. bombi and 3.6% for A. bombi (n = 111). The pathogens were not detected in 441 bumble bees belonging to five of the eight known Argentine native species (Bombus atratus, Bombus morio, Bombus bellicosus, Bombus opifex, Bombus tucumanus) collected elsewhere in the country. Although the absence of natural occurrence of C. bombi and A. bombi in Argentine native bumble bees cannot be ascertained at present due to the limited surveys performed, it is important to report their detection in invasive B. terrestris. The invasion event is relatively recent and the accompanying pathogens are not species specific within the genus Bombus.  相似文献   

7.
Abstract 1. Experimental studies of multihost parasite dynamics are scarce. Understanding the transmission dynamics of parasites in these systems is a key task in developing better models of parasite evolution and to make more accurate predictions of disease dynamics. 2. Bumblebee species (Bombus spp.) host the trypanosomatid parasite, Crithidia bombi. Its transmission in the field occurs through the shared use of flowers. Flowers are a perfect scenario for inter‐taxa transmission of diseases because they are used by a wide range of animals. 3. Honey bees host a poorly studied trypanosomatid, Crithidia mellificae. In this study, five questions have been experimentally addressed: (a) Can C. bombi infect honey bees? (b) Can C. mellificae infect bumblebees? (c) Can the honey bee act as a vector for C. bombi? (d) Are C. bombi cells present in honey‐bee faeces? (e) Does C. bombi have an effect on the mortality of honey bees after ingestion? 4. While both parasites were found to be specific to their hosts at the genus level, results suggest that honey bees may play a role in the epidemiology of C. bombi transmission.  相似文献   

8.
Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between‐year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony‐specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha?1 in 2014 and 2015, respectively), estimated between‐year lineage survival rate was 0.07, and there was no evidence of fine‐scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion.  相似文献   

9.
Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect‐pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variation within cultivated sunflowers and its effects on bee foraging behaviours. Over 2 years, we planted different sunflower inbred lines, including male‐fertile and male‐sterile lines, and measured nectar volume, nectar sugar concentration and composition, and corolla length. During bloom, we recorded visits by both managed honey bees and wild bees. We then examined consistency in relative nectar production by comparing field results to those from a greenhouse experiment. Sunflower inbred lines varied significantly in all floral traits, including the amount and composition of nectar sugars, and in corolla length. Both wild bee and honey bee visits significantly increased with nectar sugar amount and decreased with corolla length, but appeared unaffected by nectar sugar composition. While wild bees made more visits to sunflowers providing pollen (male‐fertile), honey bees preferred plants without pollen (male‐sterile). Differences in nectar quantity among greenhouse‐grown sunflower lines were similar to those measured in the field, and bumble bees preferentially visited lines with more nectar in greenhouse observations. Our results show that sunflowers with greater quantities of nectar sugar and shorter corollas receive greater pollination services from both managed and wild bees. Selecting for these traits could thus increase sunflower crop yields and provide greater floral resources for bees.  相似文献   

10.
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.  相似文献   

11.
Pollen dispersal success in entomophilous plants is influenced by the amount of pollen produced per flower, the fraction of pollen that is exported to other flowers during a pollinator visit, visitation frequency, and the complementarity between pollen donor and recipients. For bumble bee-pollinated Polemonium viscosum the first three determinants of male function are correlated with morphometric floral traits. Pollen production is positively related to corolla and style length, whereas pollen removal per visit by bumble bee pollinators is a positive function of corolla flare. Larger-flowered plants receive more bumble bee visits than small-flowered individuals. We found no evidence of tradeoffs between pollen export efficiency and per visit accumulation of outcross pollen; each was influenced by unique aspects of flower morphology. Individual queen bumble bees of the principal pollinator species, Bombus kirbyellus, were similar in male, female, and absolute measures of pollination effectiveness. An estimated 2.9% of the pollen that bumble bees removed from flowers during a foraging bout was, on average, deposited on stigmas of compatible recipients. Significant plant-to-plant differences in pollen production, pollen export per visit, and outcross pollen receipt were found for co-occurring individuals of P. viscosum indicating that variation in these fitness related traits can be seen by pollinator-mediated selection.  相似文献   

12.
13.
Almond trees are one of the most important crops in the Balearic Islands. The pollination of almonds is limited to the activity of insects, and cross‐pollination is necessary for fruit development. Currently, honey bees and wild bee populations are declining considerably due to multiple causes, such as the use of pesticides, diseases and habitat loss. An alternative to increase the almond production is the use of commercial pollinators. In this long‐term (3 years) study, the effect of the introduction of Bombus terrestris colonies on almond production was evaluated in two orchards. Two experimental designs were carried out to study the best management of this pollinator. For 2 years, all bumble bee colonies were placed in the middle of the plot and during the last year, the bumble bee colonies were distributed homogenously in the plot. Fruit set and the foraging behaviour of bumble bees during the blossoming period was determined, and the effect of different environmental variables on the visitation rate of bumble bees was assessed by means of a generalized linear mixed model (GLMM). Moreover, for the first time, the spatial distribution of fruit set was evaluated. Our results show that fruit set was significantly higher in the fields where B. terrestris had been introduced than in the control plots. This increased production resulted in a positive economic balance for the farmer. Moreover, bumble bees showed to prefer trees in a southwest orientation that were close to their colony. The activity of bumble bees showed to be significantly influenced by wind speed (the higher the speed the more flowers are visited by B. terrestris) and time after flowering (visitation rate decreased with days after flowering). In order to improve its management and obtain the highest possible almond production, it is important to understand the activity and behaviour of this pollinator.  相似文献   

14.
Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V. uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation.  相似文献   

15.
1. Increasing urbanisation is often cited as a cause of declining biodiversity, but for bumblebees there is evidence that urban populations of some species such as Bombus terrestris L. may be more dense than those found in agricultural landscapes, perhaps because gardens provide plentiful floral resources and nesting opportunities. 2. Here we examine the influence of urbanisation on the prevalence of the main protozoan parasites of bumblebees in west central Scotland. We would expect transmission rates and prevalence of parasites to be higher in high density host populations, all else being equal. 3. Workers of two bee species, B. terrestris and B. pascuorum, were sampled over a 45‐day period in mid to late summer, and parasites were detected in faeces and via dissection. A comparison of the two methods suggests that faecal sampling is considerably less sensitive than dissection, failing to detect infection in 27.8%, 55.1%, and 80% of cases of infection with the parasites Crithidia bombi, Nosema bombi, and Apicystis bombi, respectively. 4. For all three parasites, broad patterns of prevalence were similar, with prevalence tending to increase with urbanisation in B. terrestris but not in B. pascuorum. The different patterns of seasonal prevalence in the two bee species suggest that intraspecific transmission is more important that interspecific transmission. 5. Our observation of greater parasite prevalence among B. terrestris in urban compared with rural areas suggests that urban habitats may present greater opportunities for parasite transmission. Greater bee densities in urban areas may be the driving factor; however, further study is still needed. For example, differences in disease prevalence between habitats could be driven by differences in the types and abundance of flowers that are available, or in exposure to environmental stressors.  相似文献   

16.
Resource preemption by alien organisms can contribute to their invasion success and the demise of functionally equivalent native species, particularly when opportunistic foraging by aliens results in more efficient exploitation. In forests of NW Patagonia, the only native bumble bee and major pollinator, Bombus dahlbomii, declined almost to extinction as the alien B. ruderatus increased in abundance since its first appearance about 17 years ago. To explore whether resource competition might have driven this displacement we studied the behavior and foraging efficiency of both bumble bees while they harvested nectar from flowers of Alstroemeria aurea, the main summer food resource in the forests of NW Patagonia. We compared the nectar content of flowers that bees selected, recently visited, and rejected with that of randomly-chosen neighboring flowers and assessed differences in visitation rates. The native bumble bee selects flowers with abundant nectar and mostly exploits nectar-rich flower patches by rejecting a higher proportion of flowers with little or no nectar. On the other hand, the alien bumble bee discriminated less with respect to sugar content per visited flower, but visited more flowers per minute. Workers of the native bumble bee harvested ~70% more sugar per unit of time than those of the alien species in absolute terms, and a similar amount when sugar harvested was expressed as a percentage of body mass. In contrast to expectation, the opportunistic foraging of the alien bumblebee was not more efficient and therefore cannot explain the ecological extinction of the native species through exploitative competition. These findings suggest that the displacement of the native species by the alien may be driven by other factors, such as the associated introduction of novel diseases or parasites.  相似文献   

17.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

18.
The benefits of honey bee dance communication for colony performance in different resource environments are still not well understood. Here, we test the hypothesis that directional dance communication enables honey bee colonies to maintain a diverse pollen diet, especially in landscapes with low resource diversity. To test this hypothesis, we placed 24 Apis mellifera L. colonies with either intact or experimentally disrupted dance communication in eight agricultural landscapes that differed in the diversity of flowering plants and in the dominance of mass‐flowering crops. Pollen from incoming foragers was collected and identified via DNA metabarcoding. Disrupting dance communication affected the way the diversity of honey bee pollen diets was impacted by the dominance of mass‐flowering crops in available flower resources (p = .04). With increasing dominance of mass‐flowering crops in resource environments, foragers of colonies with intact communication foraged on an increasing proportion of available plant genera (p = .01). This was not the case for colonies with disrupted dance communication (p = .5). We conclude that the honey bee dance communication benefits pollen foraging on diverse plant resources and thereby contributes to high quality nutrition in environments with low‐resource diversity.  相似文献   

19.
Recent studies have shown that honey bees, bumble bees, and some meliponine bee species of the genera Trigona, Meliponula, and Dactylurina are hosts of the small hive beetle (SHB) Aethina tumidaMurray (Coleoptera: Nitidulidae), a pest of honey bee colonies in various regions of the world. Olfaction has been implicated in SHB infestations of honey bee and bumble bee colonies. We used olfactometer bioassays to investigate responses of adult male and female SHBs to odors from intact colonies and separate hive components (pot honey, pot pollen, cerumen, and propolis) of three African meliponine bee species, Meliponula ferruginea (Lepeletier) (black morphospecies), M. ferruginea (reddish brown morphospecies), and Meliponula bocandei (Spinola) (Hymenoptera: Apidae). Although both sexes of the beetle strongly preferred intact colony, pot honey, and pot pollen odors, there was no evidence of attraction to propolis and cerumen odors from the three meliponine bee species. Both sexes of SHB also strongly preferred odors from honey bees, Apis mellifera L. (Hymenoptera: Apidae), over odors from the three meliponine bee species. Our results provide substantial evidence of the host potential of African meliponine bees for the SHB, and we discuss this complex association of the SHB with species within the Apidae family.  相似文献   

20.
High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号