首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12‐fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change.  相似文献   

2.
A microbial species concept is crucial for interpreting the variation detected by genomics and environmental genomics among cultivated microorganisms and within natural microbial populations. Comparative genomic analyses of prokaryotic species as they are presently described and named have led to the provocative idea that prokaryotes may not form species as we think about them for plants and animals. There are good reasons to doubt whether presently recognized prokaryotic species are truly species. To achieve a better understanding of microbial species, we believe it is necessary to (i) re-evaluate traditional approaches in light of evolutionary and ecological theory, (ii) consider that different microbial species may have evolved in different ways and (iii) integrate genomic, metagenomic and genome-wide expression approaches with ecological and evolutionary theory. Here, we outline how we are using genomic methods to (i) identify ecologically distinct populations (ecotypes) predicted by theory to be species-like fundamental units of microbial communities, and (ii) test their species-like character through in situ distribution and gene expression studies. By comparing metagenomic sequences obtained from well-studied hot spring cyanobacterial mats with genomic sequences of two cultivated cyanobacterial ecotypes, closely related to predominant native populations, we can conduct in situ population genetics studies that identify putative ecotypes and functional genes that determine the ecotypes' ecological distinctness. If individuals within microbial communities are found to be grouped into ecologically distinct, species-like populations, knowing about such populations should guide us to a better understanding of how genomic variation is linked to community function.  相似文献   

3.
The genomic architecture underlying ecological divergence and ecological speciation with gene flow is still largely unknown for most organisms. One central question is whether divergence is genome‐wide or localized in ‘genomic mosaics’ during early stages when gene flow is still pronounced. Empirical work has so far been limited, and the relative impacts of gene flow and natural selection on genomic patterns have not been fully explored. Here, we use ecotypes of Atlantic cod to investigate genomic patterns of diversity and population differentiation in a natural system characterized by high gene flow and large effective population sizes, properties which theoretically could restrict divergence in local genomic regions. We identify a genomic region of strong population differentiation, extending over approximately 20 cM, between pairs of migratory and stationary ecotypes examined at two different localities. Furthermore, the region is characterized by markedly reduced levels of genetic diversity in migratory ecotype samples. The results highlight the genomic region, or ‘genomic island’, as potentially associated with ecological divergence and suggest the involvement of a selective sweep. Finally, we also confirm earlier findings of localized genomic differentiation in three other linkage groups associated with divergence among eastern Atlantic populations. Thus, although the underlying mechanisms are still unknown, the results suggest that ‘genomic mosaics’ of differentiation may even be found under high levels of gene flow and that marine fishes may provide insightful model systems for studying and identifying initial targets of selection during ecological divergence.  相似文献   

4.
Littorina saxatilis is becoming a model system for understanding the genomic basis of ecological speciation. The parallel formation of crab‐adapted ecotypes that exhibit partial reproductive isolation from wave‐adapted ecotypes has enabled genomic investigation of conspicuous shell traits. Recent genomic studies suggest that chromosomal rearrangements may enable ecotype divergence by reducing gene flow. However, the genomic architecture of traits that are divergent between ecotypes remains poorly understood. Here, we use 11,504 single nucleotide polymorphism (SNP) markers called using the recently released L. saxatilis genome to genotype 462 crab ecotype, wave ecotype and phenotypically intermediate Spanish L. saxatilis individuals with scored phenotypes. We used redundancy analysis to study the genetic architecture of loci associated with shell shape, shape corrected for size, shell size and shell ornamentation, and to compare levels of co‐association among different traits. We discovered 341 SNPs associated with shell traits. Loci associated with trait divergence between ecotypes were often located inside putative chromosomal rearrangements recently characterized in Swedish L. saxatilis. In contrast, we found that shell shape corrected for size varied primarily by geographic site rather than by ecotype and showed little association with these putative rearrangements. We conclude that genomic regions of elevated divergence inside putative rearrangements were associated with divergence of L. saxatilis ecotypes along steep environmental axes—consistent with models of adaptation with gene flow—but were not associated with divergence among the three geographical sites. Our findings support predictions from models indicating the importance of genomic regions of reduced recombination allowing co‐association of loci during ecological speciation with ongoing gene flow.  相似文献   

5.
The large distributional areas and ecological niches of many lichenized fungi may in part be due to the plasticity in interactions between the fungus (mycobiont) and its algal or cyanobacterial partners (photobionts). On the one hand, broad‐scale phylogenetic analyses show that partner compatibility in lichens is rather constrained and shaped by reciprocal selection pressures and codiversification independent of ecological drivers. On the other hand, sub‐species‐level associations among lichen symbionts appear to be environmentally structured rather than phylogenetically constrained. In particular, switching between photobiont ecotypes with distinct environmental preferences has been hypothesized as an adaptive strategy for lichen‐forming fungi to broaden their ecological niche. The extent and direction of photobiont‐mediated range expansions in lichens, however, have not been examined comprehensively at a broad geographic scale. Here we investigate the population genetic structure of Lasallia pustulata symbionts at sub‐species‐level resolution across the mycobiont's Europe‐wide range, using fungal MCM7 and algal ITS rDNA sequence markers. We show that variance in occurrence probabilities in the geographic distribution of genetic diversity in mycobiont‐photobiont interactions is closely related to changes in climatic niches. Quantification of niche extent and overlap based on species distribution modeling and construction of Hutchinsonian climatic hypervolumes revealed that combinations of fungal–algal interactions change at the sub‐species level along latitudinal temperature gradients and in Mediterranean climate zones. Our study provides evidence for symbiont‐mediated niche expansion in lichens. We discuss our results in the light of symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation and niche evolution in mutualisms.  相似文献   

6.
Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.  相似文献   

7.
Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour‐joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within‐prairie genetic diversity (92%). Using Bayenv 2, 14 top‐ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScan FST outliers were in common with Bayenv 2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate.  相似文献   

8.
Immune responses are costly, causing trade‐offs between defense and other host life history traits. Aphids present a special system to explore the costs associated with immune activation since they are missing several humoral and cellular mechanisms thought important for microbial resistance, and it is unknown whether they have alternative, novel immune responses to deal with microbial threat. Here we expose pea aphids to an array of heat‐killed natural pathogens, which should stimulate immune responses without pathogen virulence, and measure changes in life‐history traits. We find significant reduction in lifetime fecundity upon exposure to two fungal pathogens, but not to two bacterial pathogens. This finding complements recent genomic and immunological studies indicating that pea aphids are missing mechanisms important for bacterial resistance, which may have important implications for how aphids interact with their beneficial bacterial symbionts. In general, recent exploration of the immune systems of non‐model invertebrates has called into question the generality of our current picture of insect immunity. Our data highlight that taking an ecological approach and measuring life‐history traits to a broad array of pathogens provides valuable information that can complement traditional approaches.  相似文献   

9.
We have investigated microbial mats of alkaline siliceous hot springs in Yellowstone National Park as natural model communities to learn how microbial populations group into species-like fundamental units. Here, we bring together empirical patterns of the distribution of molecular variation in predominant mat cyanobacterial populations, theory-based modelling of how to demarcate phylogenetic clusters that correspond to ecological species and the dynamic patterns of the physical and chemical microenvironments these populations inhabit and towards which they have evolved adaptations. We show that putative ecotypes predicted by the theory-based model correspond well with distribution patterns, suggesting populations with distinct ecologies, as expected of ecological species. Further, we show that increased molecular resolution enhances our ability to detect ecotypes in this way, though yet higher molecular resolution is probably needed to detect all ecotypes in this microbial community.  相似文献   

10.
The adaptive potential of tree species to cope with climate change has important ecological and economic implications. Many temperate tree species experience a wide range of environmental conditions, suggesting high adaptability to new environmental conditions. We investigated adaptation to regional climate in the drought‐sensitive tree species Alnus glutinosa (Black alder), using a complementary approach that integrates genomic, phenotypic and landscape data. A total of 24 European populations were studied in a common garden and through landscape genomic approaches. Genotyping‐by‐sequencing was used to identify SNPs across the genome, resulting in 1990 SNPs. Although a relatively low percentage of putative adaptive SNPs was detected (2.86% outlier SNPs), we observed clear associations among outlier allele frequencies, temperature and plant traits. In line with the typical drought avoiding nature of A. glutinosa, leaf size varied according to a temperature gradient and significant associations with multiple outlier loci were observed, corroborating the ecological relevance of the observed outlier SNPs. Moreover, the lack of isolation by distance, the very low genetic differentiation among populations and the high intrapopulation genetic variation all support the notion that high gene exchange combined with strong environmental selection promotes adaptation to environmental cues.  相似文献   

11.
The migratory and stationary ecotypes of Atlantic cod are two ecological forms that differ by migratory behavior. Recent studies have revealed extended genomic regions associated with local adaptations of the ecotypes. In this study, a panel of markers was created to identify the variants of these genomic regions.  相似文献   

12.
Identifying the traits that determine spatial distributions can be challenging when studying organisms, like bacteria, for which phenotypic information is limited or non‐existent. However, genomic data provide another means to infer traits and determine the ecological attributes that account for differences in distributions. We determined the spatial distributions of ~124 000 soil bacterial taxa across a 3.41 km2 area to determine whether we could use phylogeny and/or genomic traits to explain differences in habitat breadth. We found that occupancy was strongly correlated with environmental range; taxa that were more ubiquitous were found across a broader range of soil conditions. Across the ~500 taxa for which genomic information was available, genomic traits were more useful than phylogeny alone in explaining the variation in habitat breadth; bacteria with larger genomes and more metabolic versatility were more likely to have larger environmental and geographical distributions. Just as trait‐based approaches have proven to be so useful for understanding the distributions of animals and plants, we demonstrate that we can use genomic information to infer microbial traits that are difficult to measure directly and build trait‐based predictions of the biogeographical patterns exhibited by microbes.  相似文献   

13.
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave‐adapted and crab‐adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double‐digested restriction‐associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%–15.1% of their divergent loci with a third more‐distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid‐shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.  相似文献   

14.
Repeated adaptive ecological diversification has commonly been reported in fish and has often been associated with trophic niche diversity. The main goal of this study was to investigate the extent of parallelism in the genomic and phenotypic divergence between piscivorous and planktivorous lake trout ecotypes from Laurentian Shield lakes, Canada. This was achieved by documenting the extent of morphological differentiation using geometric morphometrics and linear measurements as well as the pattern of genomic divergence by means of RADseq genotyping (3925 filtered SNPs) in 12 lakes. Our results indicate that the two ecotypes evolved distinct body shape and several linear measurements in parallel. Neutral genetic differentiation was pronounced between all isolated populations (Mean FST = 0.433), indicating no or very limited migration and pronounced genetic drift. Significant genetic differentiation also suggested partial reproductive isolation between ecotypes in the two lakes where they are found in sympatry. Combining different outlier detection methods, we identified 48 SNPs putatively under divergent selection between ecotypes, among which 10 could be annotated and related to functions such as developmental processes and ionic regulation. Finally, our results indicate that parallel morphological divergence is accompanied by both parallel and nonparallel genomic divergence, which is associated with the use of different trophic niches between ecotypes. The results are also discussed in the context of management and conservation of this highly exploited species throughout northern North America.  相似文献   

15.
Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to eastern US forests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases of GBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluated Fst per locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScan Fst outliers. For LFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.  相似文献   

16.
Climate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.  相似文献   

17.
Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long‐lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long‐term (6‐year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500–1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long‐term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate‐matched ecotypes is critical to future ecology, conservation, and sustainability under climate change.  相似文献   

18.
Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross‐biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross‐validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies.  相似文献   

19.
Theory predicts that structural genomic variants such as inversions can promote adaptive diversification and speciation. Despite increasing empirical evidence that adaptive divergence can be triggered by one or a few large inversions, the degree to which widespread genomic regions under divergent selection are associated with structural variants remains unclear. Here we test for an association between structural variants and genomic regions that underlie parallel host‐plant‐associated ecotype formation in Timema cristinae stick insects. Using mate‐pair resequencing of 20 new whole genomes we find that moderately sized structural variants such as inversions, deletions and duplications are widespread across the genome, being retained as standing variation within and among populations. Using 160 previously published, standard‐orientation whole genome sequences we find little to no evidence that the DNA sequences within inversions exhibit accentuated differentiation between ecotypes. In contrast, a formerly described large region of reduced recombination that harbours genes controlling colour‐pattern exhibits evidence for accentuated differentiation between ecotypes, which is consistent with differences in the frequency of colour‐pattern morphs between host‐associated ecotypes. Our results suggest that some types of structural variants (e.g., large inversions) are more likely to underlie adaptive divergence than others, and that structural variants are not required for subtle yet genome‐wide genetic differentiation with gene flow.  相似文献   

20.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号