首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants can defend themselves against the damaging effects of herbivory in at least two ways. Resistant plants avoid or deter herbivores and are therefore fed upon less than susceptible plants. Tolerant plants are not eaten less than plants with little tolerance, but the effects of herbivore damage are not so detrimental to a tolerant plant as they are to a less tolerant plant. Biologists have suggested that these two strategies might represent two alternative and redundant defenses against herbivory since they appear to serve the same function for plants. I explore the relationship between resistance and tolerance, particularly with regards to how the joint evolution of these two traits will influence the evolution of plant defense. Although I briefly review some of the contributions of theory to the study of tolerance, I concentrate on an empirical, ecological genetic approach to the study of the evolution of these characters and the coevolution of tolerance and herbivores. In order to understand the evolution of any trait, we must understand the evolutionary forces acting on the trait. Specifically, we must understand how natural selection acts on tolerance. I review several studies that have specifically measured the form of selection acting on tolerance and tested the hypothesis that resistance and tolerance are alternative strategies. I also present a statistical analysis that does not support the hypothesis that herbivores are selective agents on tolerance. Finally, I consider a variety of constraints that possibly restrict the evolution of tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We examined multivariate evolution of 20 leaf terpenoids in the invasive plant Melaleuca quinquenervia in a common garden experiment. Although most compounds, including 1,8-Cineole and Viridiflorol, were reduced in home compared with invaded range genotypes, consistent with an evolutionary decrease in defense, one compound (E-Nerolidol) was greater in invaded than home range genotypes. Nerolidol was negatively genetically correlated with Cineole and Viridiflorol, and the increase in this compound in the new range may have been driven by this negative correlation. There was positive selection on all three focal compounds, and a loss of genetic variation in introduced range genotypes. Selection skewers analysis predicted an increase in Cineole and Viridiflorol and a decrease or no change in Nerolidol, in direct contrast to the observed changes in the new range. This discrepancy could be due to differences in patterns of selection, genetic correlations, or the herbivore communities in the home versus introduced ranges. Although evolutionary changes in most compounds were consistent with the evolution of increased competitive ability hypothesis, changes in other compounds as well as selection patterns were not, indicating that it is important to understand selection and the nature of genetic correlations to predict evolutionary change in invasive species.  相似文献   

3.
Recent empirical evidence suggests that trade‐off relationships can evolve, challenging the classical image of their high entrenchment. For energy reliant traits, this relationship should depend on the endocrine system that regulates resource allocation. Here, we model changes in this system by mutating the expression and conformation of its constitutive hormones and receptors. We show that the shape of trade‐offs can indeed evolve in this model through the combined action of genetic drift and selection, such that their evolutionarily expected curvature and length depend on context. In particular, the shape of a trade‐off should depend on the cost associated with resource storage, itself depending on the traded resource and on the ecological context. Despite this convergence at the phenotypic level, we show that a variety of physiological mechanisms may evolve in similar simulations, suggesting redundancy at the genetic level. This model should provide a useful framework to interpret and unify the overly complex observations of evolutionary endocrinology and evolutionary ecology.  相似文献   

4.
The pattern of genetic variances and covariances among characters, summarized in the additive genetic variance‐covariance matrix, G , determines how a population will respond to linear natural selection. However, G itself also evolves in response to selection. In particular, we expect that, over time, G will evolve correspondence with the pattern of multivariate nonlinear natural selection. In this study, we substitute the phenotypic variance‐covariance matrix ( P ) for G to determine if the pattern of multivariate nonlinear selection in a natural population of Anolis cristatellus, an arboreal lizard from Puerto Rico, has influenced the evolution of genetic variances and covariances in this species. Although results varied among our estimates of P and fitness, and among our analytic techniques, we find significant evidence for congruence between nonlinear selection and P , suggesting that natural selection may have influenced the evolution of genetic constraint in this species.  相似文献   

5.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

6.
Pathogen‐mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole‐genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.  相似文献   

7.
Lau JA  Galloway LF 《Oecologia》2004,141(4):577-583
Floral visitors vary in their pollination efficiency and their preferences for floral traits. If low-efficiency pollinators decrease the amount of pollen available to higher efficiency visitors, then low-efficiency visitors may actually have negative fitness consequences for the plants that they visit. We used experimental arrays in two populations to determine the floral preferences and the fitness effects of low-efficiency (or ugly) pollinators on Campanula americana. These ugly pollinators (halictid bees) preferentially visited flowers with pollen over flowers that had had their pollen removed. C. americana pollen color varies quantitatively from light tan to dark purple, and we found that natural variation in pollen color influenced the magnitude of halictid preferences for flowers with pollen. In general, preferences for flowers with pollen were stronger when the ugly pollinators foraged in arrays of flowers with tan-colored pollen than in arrays with purple-colored pollen. When plants received few visits by efficient Bombus pollinators, visits by ugly pollinators significantly decreased siring success relative to plants where visits by ugly pollinators were prevented. In contrast, ugly pollinators did not influence siring success when higher efficiency pollinators were more abundant. Thus, the relationship between low-efficiency pollinators and the plants that they visit varies from commensalistic to antagonistic depending on the presence of other pollinators in the community. Our findings suggest that the negative fitness effects and floral preferences of low-efficiency or ugly pollinators may contribute to the maintenance of a pollen color polymorphism in C. americana.  相似文献   

8.
9.
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress‐related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks.  相似文献   

10.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

11.
  • 1 The vine weevil Otiorhynchus sulcatus is a major pest of horticultural crops worldwide, with root‐feeding larvae causing most damage. Adult oviposition aboveground may therefore influence levels of damage as the larvae are relatively immobile after oviposition.
  • 2 The present study investigated feeding and oviposition behaviour on red raspberry Rubus idaeus using intact plants, ensuring that choices reflected the realistic differences in cultivar appearance and chemical composition. Previous studies investigating vine weevil feeding and oviposition on other crops have used excised plant material, which may inadvertently influence behaviour.
  • 3 Adult weevils significantly preferred to feed on particular cultivars in the choice experiment (e.g. Tulameen), although they consumed significantly more foliage (0.22–1.03 cm2/day) on different raspberry cultivars (e.g. Glen Moy, Glen Rosa and a wild accession) in no‐choice situations.
  • 4 In choice experiments, weevils tended to avoid laying eggs on some cultivars (e.g. Glen Moy and the wild accession). The number of eggs laid (1.91–4.32 eggs per day) did not, however, differ significantly between the cultivars in a no‐choice situation. Foliar nitrogen and magnesium concentrations were positively, although weakly, correlated with the total number of eggs laid.
  • 5 The present study highlights the importance of considering both choice and no‐choice tests when assessing crop susceptibility to attack because weevils may avoid feeding on certain cultivars (e.g. Glen Moy) when given a choice, although this would cause significant damage to such cultivars if they were grown in monoculture (i.e. when there is no alternative).
  相似文献   

12.
Since neo-Darwinism arose from the work of Darwin and Mendel evolution by natural selection has been seen as contingent and historical being defined by an a posteriori selection process with no a priori laws that explain why evolution on Earth has taken the direction of the major evolutionary trends and transitions instead of any other direction. Recently, however, major life-history trends and transitions have been explained as inevitable because of a deterministic selection that unfolds from the energetic state of the organism and the density-dependent competitive interactions that arise from self-replication in limited environments. I describe differences and similarities between the historical and deterministic selection processes, illustrate concepts using life-history models on large body masses and limited reproductive rates, review life-history evolution with a wider focus on major evolutionary transitions, and propose that biotic evolution is driven by a universal natural selection where the long-term evolution of fitness-related traits is determined mainly by deterministic selection, while contingency is important predominately for neutral traits. Given suitable environmental conditions, it is shown that selection by energetic state and density-dependent competitive interactions unfolds to higher level selection for life-history transitions from simple asexually reproducing self-replicators to large bodied organisms with senescence and sexual reproduction between males and females, and in some cases, to the fully evolved eusocial colony with thousands of offspring workers. This defines an evolutionary arrow of time for open thermodynamic systems with a constant inflow of energy, predicting similar routes for long-term evolution on similar planets.  相似文献   

13.
Host plants are used by herbivorous insects as feeding or nesting resources. In wood‐boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored.  相似文献   

14.
Analysis of contemporary evolution can provide important insights into the pattern and rate of phenotypic evolution. The threespine stickleback population in Loberg Lake was exterminated in 1982, and a new population was founded between 1983 and 1989 by anadromous stickleback. The body shape of the Loberg Lake population resembled that of anadromous populations in 1990, although it had diverged markedly by 1992. Between 1992 and 2009, the population evolved more slowly to resemble typical lake populations in the region, diverging approximately 68% of the distance separating its putative ancestor and the original native population by 2009. Temporal evolution is the main source of variation, although spatial heterogeneity, armour phenotype, and allometry contribute significant variation. There was no significant effect of ancestral phenotypic shape covariance on the evolutionary trajectory of this population. Temporal variation in the Loberg Lake population provides a rare glimpse into the evolutionary response of a complex trait to natural selection after a major habitat shift. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 817–831.  相似文献   

15.
Contextualizing evolutionary history and identifying genomic features of an insect that might contribute to its pest status is important in developing early detection and control tactics. In order to understand the evolution of pestiferousness, which we define as the accumulation of traits that contribute to an insect population's success in an agroecosystem, we tested the importance of known genomic properties associated with rapid adaptation in the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say. Within the leaf beetle genus Leptinotarsa, only CPB, and a few populations therein, has risen to pest status on cultivated nightshades, Solanum. Using whole genomes from ten closely related Leptinotarsa species native to the United States, we reconstructed a high‐quality species tree and used this phylogenetic framework to assess evolutionary patterns in four genomic features of rapid adaptation: standing genetic variation, gene family expansion and contraction, transposable element abundance and location, and positive selection at protein‐coding genes. Throughout approximately 20 million years of history, Leptinotarsa species show little evidence of gene family turnover and transposable element variation. However, there is a clear pattern of CPB experiencing higher rates of positive selection on protein‐coding genes. We determine that these rates are associated with greater standing genetic variation due to larger effective population size, which supports the theory that the demographic history contributes to rates of protein evolution. Furthermore, we identify a suite of coding genes under positive selection that are putatively associated with pestiferousness in the Colorado potato beetle lineage. They are involved in the biological processes of xenobiotic detoxification, chemosensation and hormone function.  相似文献   

16.
Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects. Living in a sedentary lifestyle, plants are constantly adapting to their environment. They employ various strategies to increase performance and fitness. Thus, plants developed cost‐effective strategies to defend against specific insects and pathogens. Plant defense, however, imposes selective pressure on insects and pathogens. This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense. This results in an evolutionary arms race among plants, pathogens and insects. The ever‐changing adaptations and physiological alterations among these organisms make studying plant–vector–pathogen interactions a challenging and fascinating field. Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize. Therefore, this review focuses on the integral parts of plant–vector–pathogen interactions in order to understand the factors that affect plant defense and disease development. The review addresses plant–vector–pathogen co‐evolution, plant defense strategies, specificity of plant defenses and plant–vector–pathogen interactions. Improving the comprehension of these factors will provide a multi‐dimensional perspective for the future research in pest and disease management.  相似文献   

17.
Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition‐mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore‐free habitat altered the orientation of G , revealing a negative genetic covariation between defense‐ and competition‐related metabolites that is typically masked in herbivore‐exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition‐allocation trade‐offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture.  相似文献   

18.
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders'' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates.  相似文献   

19.
Variation in plant traits among plant species may promote the development of a characteristic functional assemblage of insect herbivores associated with each plant species. However, only a small number of studies have detailed the representation of several herbivore guilds among co‐occurring plant species to determine whether the functional structure of herbivorous insect assemblages varies widely and consistently among plant species. The present study provides one of the few published data sets reporting on the density of several guilds of insect herbivores among numerous plant species. Variation in guild associations with plant phenology and season are also described. Insect herbivores were divided into 10 guilds, and the representation of these guilds was examined for 18 co‐occurring plant species. Guild densities and assemblage composition varied significantly among plant species, even when variation over time was taken into account. Variation in guild densities and assemblage composition were not strongly related to the taxonomic relationships of the plants. The highest densities of several guilds occurred in spring and summer, although other guilds were not strongly seasonal. Certain guilds were strongly associated with the presence of new leaves, whereas other guilds appeared to prefer mature leaves. This resulted in assemblage differences between samples containing new and mature leaves and samples containing mature leaves only. Even though the timing and duration of leaf and flower production varied among plant species, this did not explain all variation in guild densities among plant species. It is suggested that additional factors, including plant traits, are contributing to the wide and consistent variation in herbivore assemblage composition among plant species.  相似文献   

20.
Herbivore‐induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odour preferences of four braconid wasps – the gregarious parasitoid Cotesia glomerata (L.) and the solitary parasitoids Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday) – were studied in olfactometers. Each species showed attraction to pheromones but in somewhat different ways. Males of the two Cotesia species were attracted to virgin females, whereas females of M. rufiventris were attracted to virgin males. Male and female M. mediator exhibited attraction to both sexes. Importantly, female and male wasps of all four species were strongly attracted by HIPVs, independent of mating status. In most cases, male wasps were also attracted to intact plants. The wasps preferred the combination of HIPVs and pheromones over plant odours alone, except M. mediator, which appears to mainly use HIPVs for mate location. We discuss the ecological contexts in which the combined use of pheromones and HIPVs by parasitoids can be expected. To our knowledge, this is the first study to show that braconid parasitoids use HIPVs and pheromones in combination to locate mates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号