首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in trophic niches among carabid beetles (Coleoptera: Carabidae) co‐occurring on the forest floors of warm temperate forests in central Japan were studied using carbon (δ13C) and nitrogen (δ15N) stable isotope analyses. Different carabid species showed similar δ15N values, which were higher than those of their possible invertebrate prey (herbivores and detritivores) collected from the litter layer, indicating that these species were consumers in the same trophic level. In contrast, δ13C values differed among carabid species, indicating interspecific differences in prey animals. The variation in the δ13C value was larger in summer than in autumn. In summer, δ13C values indicated that some carabids depended highly on either grazing (low δ13C values) or detrital sources (high δ13C values) within the food chain [Chlaenius posticalis Motschulsky and Haplochlaenius costiger (Chaudoir), respectively], although other species with intermediate δ13C values likely depended on both. The latter group of species comprised mostly two dominant genera (Carabus and Synuchus). Although congeners might have similar feeding habits, the stable isotope ratios indicated trophic niche differences between adults of different species and between adults and larvae of the same genus.  相似文献   

2.
It is often hypothesized that two species competing for the same resource cannot stably coexist unless they partition their resources in space and time. More recently stable isotope analyses have complemented traditional, observation‐based niche research by conceptualizing many of the characteristics of communities, for example, trophic niche width and the partitioning of resources. Here we quantify resource partitioning of sympatric small mammal species in an African ecosystem by analysing stable isotope ratios of hair collected from a South African forest‐grassland vegetation mosaic, and combine this with known spatial and temporal behavioural data to interpret community competition and resource partitioning. We observe niche separation to different degrees across the entire community, with different species displaying either unique isotopic dietary preferences, or partitioning resources in space and/or time. δ13C values were more enriched in species that inhabited afromontane grassland compared with those that inhabited afromontane forest, a reflection of the dominant vegetation in each habitat. Contrary to expectations, arboreal rodents occupied higher trophic positions than terrestrial rodents and approaching δ15N values similar to insectivorous shrews, suggesting that arboreal rodents feed on items such as arthropods enriched in 15N. While grassland species display phenotypic plasticity in terms of dietary preferences, small mammals that occurred in forests display narrow niche preferences, suggesting these species may be particularly sensitive to habitat modifications. Our results illustrate that the use of stable isotopes can be used in conjunction with spatial and temporal behavioural knowledge to elucidate resource partitioning in small African mammal communities.  相似文献   

3.
4.
The majority of landbird species feed their nestlings arthropods and variation in arthropod populations can impact reproductive outcomes in these species. Arthropod populations in turn are influenced by climate because temperature affects survival and reproduction, and larval development. Thus, climate factors have the potential to influence many bird species during their reproductive phases. In this study, we assessed climate factors that impact the diet of nestling White‐headed Woodpecker (Dryobates albolarvatus), an at‐risk keystone species in much of its range in western North America. To do this, we measured stable isotope signatures (δ13C and δ15N) in 152 nestlings across six years and linked variation in isotopic values to winter (December–February) and spring (June) precipitation and temperature using mixed effects models. We also explored habitat factors that may impact δ13C and δ15N and the relationship between δ15N and nest productivity. Last, we estimated isotopic niche width for nestlings in different watersheds and years using Bayesian standard ellipses, which allowed us to compare dietary niche width and overlap. We found that colder winter temperatures were associated with an increase in δ15N and δ15N levels had a weak positive relationship with nest productivity. We also found that sites with a more diverse tree community were associated with a broader isotopic niche width in nestlings. Our findings suggest that nestling diet is affected by climate, and under future warming climate scenarios, White‐headed Woodpecker nestling diet may shift in favor of lower trophic level prey (prey with lower δ15N levels). The impact of such changes on woodpecker populations merits further study.  相似文献   

5.
Pteropods are a group of small marine gastropods that are highly sensitive to multiple stressors associated with climate change. Their trophic ecology is not well studied, with most research having focused primarily on the effects of ocean acidification on their fragile, aragonite shells. Stable isotopes analysis coupled with isotope‐based Bayesian niche metrics is useful for characterizing the trophic structure of biological assemblages. These approaches have not been implemented for pteropod assemblages. We used isotope‐based Bayesian niche metrics to investigate the trophic relationships of three co‐occurring pteropod species, with distinct feeding behaviors, sampled from the Southern Kerguelen Plateau area in the Indian Sector of the Southern Ocean—a biologically and economically important but poorly studied region. Two of these species were gymnosomes (shell‐less pteropods), which are traditionally regarded as specialist predators on other pteropods, and the third species was a thecosome (shelled pteropod), which are typically generalist omnivores. For each species, we aimed to understand (a) variability and overlap among isotopic niches; and (b) whether there was a relationship between body size and trophic position. Observed isotopic niche areas were broadest for gymnosomes, especially Clione limacina antarctica, whose observed isotopic niche area was wider than expected on both δ13C and δ15N value axes. We also found that trophic position significantly increased with increasing body length for Spongiobranchaea australis. We found no indication of a dietary shift toward increased trophic position with increasing body size for Clio pyramidata f. sulcata. Trophic positions ranged from 2.8 to 3.5, revealing an assemblage composed of both primary and secondary consumer behaviors. This study provides a comprehensive comparative analysis on trophodynamics in Southern Ocean pteropod species, and supports previous studies using gut content, fatty acid and stable isotope analyses. Combined, our results illustrate differences in intraspecific trophic behavior that may be attributed to differential feeding strategies at species level.  相似文献   

6.
Rescaling the trophic structure of marine food webs   总被引:1,自引:0,他引:1  
Measures of trophic position (TP) are critical for understanding food web interactions and human‐mediated ecosystem disturbance. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ15N between predator and prey, Δ15N = 3.4‰), resulting in an additive framework that omits known Δ15N variation. Through meta‐analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ15N and δ15N values of prey consumed. The resulting scaled Δ15N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole‐ecosystem models, indicating perceived food webs have been truncated and species‐interactions over simplified. The scaled Δ15N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem‐based management.  相似文献   

7.
The aim of the present study was to identify food sources of bark-living oribatid mites to investigate if trophic niche differentiation contributes to the diversity of bark living Oribatida. We measured the natural variation in stable isotope ratios (15N/14N, 13C/12C) in oribatid mites from the bark of oak (Quercus robur), beech (Fagus sylvatica), spruce (Picea abies) and pine (Pinus sylvestris) trees and their potential food sources, i.e., the covering vegetation of the bark (bryophytes, lichens, algae, fungi). As a baseline for calibration the stable isotope signatures of the bark of the four tree species were measured and set to zero. Oribatid mite stable isotope ratios spanned over a range of about 13 δ units for 15N and about 7 δ units for 13C suggesting that they span over about three trophic levels. Different stable isotope signatures indicate that bark living oribatid mites feed on different food sources, i.e., occupy distinct trophic niches. After calibration stable isotope signatures of respective oribatid mite species of the four tree species were similar indicating close association of oribatid mites with the corticolous cover as food source. Overall, the results support the hypothesis that trophic niche differentiation of bark living oribatid mites contributes to the high diversity of the group.  相似文献   

8.
Sympatric species are expected to differ in ecological requirements to minimize niche overlap and avoid competition. Here we assess the trophic interactions among three coexisting dolphin species from southern Brazil: the franciscana dolphin (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis), and the Lahille's bottlenose dolphin (Tursiops truncatus gephyreus). We evaluated temporal variation in carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen to examine potential dietary shifts resulting from increased fishing activity over the past three decades. We estimated the degree of niche overlap among these species and the contribution of potential prey sources to their diet. δ15N values were consistent among species and across years, while δ13C values increased for Guiana dolphins and decreased for bottlenose dolphins, suggesting changes in diet and/or foraging habitats through time. The similar δ13C and δ15N values and the high niche overlap between Guiana and bottlenose dolphins indicate that these species are primarily feeding on demersal prey. The franciscana diet is primarily composed of pelagic prey, resulting in a lower niche overlap in comparison with the other dolphin species. Our study provides further information about the foraging ecology of this unique dolphin community in southern Brazil with implications for its management and conservation.  相似文献   

9.
Stable‐isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food‐web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ13C and δ15N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio‐temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food‐web integrity.  相似文献   

10.
Antarctic notothenioid fishes represent a rare example of a marine species flock. They evolved special adaptations to the extreme environment of the Southern Ocean including antifreeze glycoproteins. Although lacking a swim bladder, notothenioids have diversified from their benthic ancestor into a wide array of water column niches, such as epibenthic, semipelagic, cryopelagic and pelagic habitats. Applying stable carbon (C) and nitrogen (N) isotope analyses to gain information on feeding ecology and foraging habitats, we tested whether ecological diversification along the benthic–pelagic axis followed a single directional trend in notothenioids, or whether it evolved independently in several lineages. Population samples of 25 different notothenioid species were collected around the Antarctic Peninsula, the South Orkneys and the South Sandwich Islands. The C and N stable isotope signatures span a broad range (mean δ13C and δ15N values between ?25.4‰ and ?21.9‰ and between 8.5‰ and 13.8‰, respectively), and pairwise niche overlap between four notothenioid families was highly significant. Analysis of isotopic disparity‐through‐time on the basis of Bayesian inference and maximum‐likelihood phylogenies, performed on a concatenated mitochondrial (cyt b) and nuclear gene (myh6, Ptr and tbr1) data set (3148 bp), showed that ecological diversification into overlapping feeding niches has occurred multiple times in parallel in different notothenioid families. This convergent diversification in habitat and trophic ecology is a sign of interspecific competition and characteristic for adaptive radiations.  相似文献   

11.
Isotopic niche and resource partitioning were examined between striped marlin (Kajikia audax) and swordfish (Xiphias gladius) using stable isotope ratios from spine bone and muscle samples. The δ13C (13C/12C) and δ15N (15N/14N) values were measured in annual growth bands from fin spines and muscle collected from striped marlin and swordfish off Baja California Sur to evaluate the trophic interaction between these two species, the relative contribution of the main prey and the isotopic niche within two different timescales. Mean trophic level (TL) values were different when tissues were compared with the highest value found in muscle samples from K. audax. When TL was analysed in all growth bands for both species, no changes were detected throughout time, suggesting only minor differences in feeding habits between these species. We determined that Dosidicus gigas, Sthenoteuthis oualaniensis, and Ancistrocheirus lesueurii were the most important prey for both species, but the relative contribution of each of them to the diet differed. There is likely no trophic overlap between K. audax and X. gladius off Baja California Sur, as K. audax occupied a larger isotopic niche with more diverse prey than X. gladius.  相似文献   

12.
The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable‐isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ13C and δ15N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31·6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19·7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits.  相似文献   

13.
Anthropogenic land use shapes the dynamics and composition of central European forests and changes the quality and availability of resources of the decomposer system. These changes likely alter the structure and functioning of soil animal food webs. Using stable isotope analysis (13C, 15N) we investigated the trophic position and resource use of soil animal species in each of four forest types (coniferous, young managed beech, old managed beech and unmanaged beech forests) across three regions in Germany. Twenty‐eight species of soil invertebrates were analyzed covering three consumer levels and a representative spectrum of feeding types and morphologies. Data on stable isotope signatures of leaf litter, fine roots and soil were included to evaluate to which extent signatures of soil animals vary with those of local resources. Soil animal δ15N and δ13C signatures varied with the respective signatures of leaf litter and fine roots. After calibration to leaf litter signatures, soil animal stable isotope signatures of the different beech forests did not differ significantly. However, thick leaf litter layers, such as those in coniferous forests, were associated with low animal stable isotope signatures presumably due to reduced access of decomposer animals to root‐derived resources, suggesting that the decomposer food web is shifted towards leaf litter based energy pathways with the shift affecting all consumer levels. Variation in stable isotope signatures of soil animal species with litter quality parameters suggests that nutrition of third level but not first and second level consumers is related to litter quality, potentially due to microorganisms locking up litter resources thereby hampering their propagation to higher trophic levels.  相似文献   

14.
Living in close association with other organisms has proven to be a widespread and successful strategy in nature. Some communities are completely driven by symbiotic associations and therefore, intimate relationships among the partners can be expected. Here, we analyzed in‐depth the food web of a particularly rich community of arthropods found in strict association with European red wood ants (Formica rufa group). We studied the trophic links between different ant‐associated myrmecophiles and food sources associated with the host ant, but also tested predator–prey links among myrmecophiles themselves. Our approach combined direct feeding tests and stable carbon and nitrogen isotope analyses for a large number of myrmecophiles. The results of the direct feeding tests reveal a complex food web. Most myrmecophiles were found to parasitize on ant brood. Moreover, we encountered multiple trophic predator– prey links among the myrmecophiles. The results of the stable isotope analyses complement these findings and indicate the existence of multiple trophic levels and trophic isotopic niche compartmentalization. δ15N values were strongly correlated with the trophic levels based on the direct tests, reflecting that δ15N values of myrmecophiles increased with higher trophic levels. This strong correlation underlines the strength of stable isotopes as a powerful tool to assess trophic levels. In addition, the stable isotope data suggest that most species only facultatively prey on ant brood. The presence of numerous trophic interactions among symbionts clearly contrasts with the traditional view of social insects nests as offering an enemy‐free space for symbionts. Interestingly, the ant host can indirectly benefit from these interactions because brood predators are also preyed upon by other myrmecophiles. Overall, this study provides unique insights into the complex interactions in a small symbiont microcosm system and suggests that the interactions between host and symbiont might be mediated by other symbionts in the same community.  相似文献   

15.
Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were used to investigate feeding patterns of larval and early juvenile pelagic fishes in slope waters of the Gulf of Mexico. Contribution of organic matter supplied to fishes and trophic position within this pelagic food web was estimated in 2007 and 2008 by comparing dietary signatures of the two main producers in this ecosystem: phytoplankton [based on particulate organic matter (POM)] and Sargassum spp. Stable isotope ratios of POM and pelagic Sargassum spp. were significantly different from one another with δ13C values of POM depleted by 3–6‰ and δ15N values enriched by 2 relative to Sargassum spp. Stable isotope ratios were significantly different among the five pelagic fishes examined: blue marlin Makaira nigricans, dolphinfish Coryphaena hippurus, pompano dolphinfish Coryphaena equiselis, sailfish Istiophorus platypterus and swordfish Xiphias gladius. Mean δ13C values ranged almost 2 among fishes and were most depleted in I. platypterus. In addition, mean δ15N values ranged 4–5 with highest mean values found for both C. hippurus and C. equiselis and the lowest mean value for M. nigricans during both years. Increasing δ13C or δ15N with standard length suggested that shifts in trophic position and diet occurred during early life for several species examined. Results of a two‐source mixing model suggest approximately an equal contribution of organic matter by both sources (POM = 55%; pelagic Sargassum spp. = 45%) to the early life stages of pelagic fishes examined. Contribution of organic matter, however, varied among species, and sensitivity analyses indicated that organic source estimates changed from 2 to 13% for a δ13C fractionation change of ±0·25‰ or a δ15N fractionation change of ± 1·0‰ relative to original fractionation values.  相似文献   

16.
We evaluated whether existing assumptions regarding the trophic ecology of a poorly‐studied predator guild, northwest (NW) Atlantic skates (family: Rajidae), were supported across broad geographic scales. Four hypotheses were tested using carbon (δ13C) and nitrogen (δ15N) stable isotope values as a proxy for foraging behavior: 1) species exhibit ontogenetic shifts in habitat and thus display a shift in 13C with differential use of the continental shelf; 2) species exhibit ontogenetic prey shifts (i.e. from smaller to larger prey items) and become enriched in 15N; 3) individuals acquire energy from spatially confined local resource pools and exhibit limited displacement; and 4) species exhibit similarly sized and highly overlapping trophic niches. We found some evidence for ontogenetic shifts in habitat‐use (δ13C) for thorny and little skate and diet (δ15N) of thorny and winter skate and hypothesize that individuals exhibit gradual trophic niche transition, especially in δ15N space, rather than a clear and distinct shift in diet throughout ontogeny. Spatial isoscapes generated for little, thorny, and winter skate highlighted distinct spatial patterns in isotopic composition across the coastal shelf. For little and thorny skate, patterns mimicked expected spatial variability in the isotopic composition of phytoplankton/POM, suggesting limited displacement and utilization of spatially confined resource pools. Winter skate, however, exhibited a much narrower range of δ13C and δ15N values, suggesting individuals may use resources from a more confined latitudinal range. Although high total trophic niche overlap was observed between some species (e.g. little and thorny skate), sympatric species (e.g. little and winter skate) exhibited a degree of trophic niche separation. These findings offer new insight into the trophic dynamics of a poorly‐studied, vulnerable group of predators, and highlight a need to re‐examine assumptions pertaining to aspects of their ecology.  相似文献   

17.
This study investigated the trophic shift of young‐of‐the‐year (YOY) thinlip grey mullet Liza ramada and golden grey mullet Liza aurata during their recruitment in a salt marsh located on the European Atlantic Ocean coast. Stable‐isotope signatures (δ13C and δ15N) of the fishes followed a pattern, having enrichments in 13C and 15N with increasing fork length (LF): δ13C in fishes < 30 mm ranged from ?19.5 to ?15.0‰, whereas in fishes > 30 mm δ13C ranged from ?15.8 to ?12.7‰, closer to the level in salt‐marsh food resources. Large differences between the δ15N values of mugilids and those of food sources (6·0‰ on average) showed that YOY are secondary consumers, similar to older individuals, when feeding in the salt marsh. YOY mugilids shift from browsing on pelagic prey to grazing on benthic resources from the salt marsh before reaching 30 mm LF. The results highlight the role of European salt marshes as nurseries for juvenile mugilids.  相似文献   

18.
Collection of minimally invasive biopsy samples has become an important method to establish normal stable isotopes reference ranges in various wildlife species. Baseline data enhance the understanding of feeding ecology, habitat use, and potential food limitation in apparently healthy, free‐ranging cetaceans. Epidermis and muscle were collected from subsistence‐hunted northern Alaskan bowhead (n= 133 epidermis/134 muscle) and beluga whales (n= 42/49) and subsistence‐hunted Russian gray whales (n= 25/17). Additional samples were obtained from gray whales stranded in California (n= 18/11) during mortality events (1999, 2000). Both δ15N and δ13C are trophic position and benthic/pelagic feeding indicators, respectively, in muscle and epidermis. Epidermis is generally enriched in 15N over muscle, while epidermal 13C is more depleted. Lipid extraction does not alter δ15N in either tissue, but affects epidermal δ13C. Nitrogen‐15 is enriched in muscle, but not epidermis of stranded compared to subsistence‐hunted gray whales, indicating probable protein catabolism and nutritional stress in stranded whales. Similarly, epidermal δ13C of harvested whales is lower than in stranded whales, suggesting depleted lipid stores and/or food limitation in stranded animals. Epidermal isotope signatures are similar in both present‐day bowheads and in an ancient sample from the Northern Bering Sea region. Although only one specimen, this suggests trophic level of the ancient whale compares to modern bowheads after a millennium.  相似文献   

19.
The food source utilization and trophic relationship of the fish assemblage in the Red River mangrove ecosystem, Vietnam were examined using dual isotope analysis. The carbon and nitrogen stable isotope signatures of 23 fish species ranged from ?24.0 to ?15.7‰ and from 8.8 to 15.5‰, respectively. Cluster analysis based on the δ13C and δ15N signatures clearly separated the mangrove fish into five feeding groups, representing detritivores, omnivores, piscivores, zoobenthivores, and zooplanktivores, which concurred with the dietary information. The results suggested that mangrove carbon contributed a small proportion in the diets of the mangrove fish, with dominant food sources coming from benthic invertebrates, including ocypodid and grapsid crabs, penaeid shrimps, bivalves, gastropods, and polychaetes. The δ15N values showed that the food web structure may be divided into different trophic levels (TLs). The lowest TLs associated with Liza macrolepis, Mugil cephalus, and Periophthalmus modestus; 18 fish species had TLs between 3.0 and 3.8; and Pennahia argentata had the highest TL (c. 4.0).  相似文献   

20.
General linear models (GLMs) were used to determine the relative importance of interspecific, ontogenetic and spatial effects in explaining variability in stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) of the co‐occurring Cape hakes Merluccius capensis and Merluccius paradoxus off South Africa. Significant GLMs were derived for both isotopes, explaining 74 and 56% of observed variance in Merluccius spp. δ15N and δ13C, respectively. Spatial effects (west or south coast) contributed most towards explaining variability in the δ15N model, with Merluccius spp. off the west coast having higher (by c. 1·4‰) δ15N levels than Merluccius spp. off the south coast. Fish size and species were also significant in explaining variability in δ15N, with both species showing significant linear increases in δ15N with size and M. capensis having higher (by c. 0·7‰) δ15N values than M. paradoxus. Species and coast explained most and similar amounts of variability in the δ13C model, with M. capensis having higher (by c. 0·8‰) δ13C values than M. paradoxus, and values being lower (by c. 0·7‰) for fishes off the west coast compared with the south coast. These results not only corroborate the knowledge of Merluccius spp. feeding ecology gained from dietary studies, in particular the ontogenetic change in trophic level corresponding to a changing diet, but also that M. capensis feeds at a slightly higher trophic level than M. paradoxus. The spatial difference in Merluccius spp. δ15N appears due to a difference in isotopic baseline, and not as a result of Merluccius spp. feeding higher in the food web off the west than the south coast, and provides new evidence that corroborates previous observations of biogeographic differences in isotopic baselines around the South African coast. This study also provides quantitative data on the relative trophic level and trophic width of Cape hakes over a large size range that can be used in ecosystem models of the southern Benguela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号