首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural hydrological disturbances in streams may reduce biomass and species richness and change community composition within streams. Disturbances can also affect beta diversity among streams if their effects are species specific or vary across sites. We investigated the effect of a natural flood on species richness, community composition and among-streams beta diversity of benthic diatoms (total community and three functional groups: low profile, high profile and motile) of seven streams in New Zealand. Sampling occurred shortly before, 10 days after and 40 days after the flood. Species richness of the total diatom community did not change after the flood. The high-profile group was the only one whose species richness declined after the flood, whereas species richness of the low-profile group increased. Community composition changed after the flood, mostly as a result of species replacement rather than richness differences over time. Finally, among-streams beta diversity did not change after the flood, suggesting that variation in species composition of benthic diatoms among streams may be maintained in the face of flood disturbances.  相似文献   

2.
Aim Ecologists have shown increasing interest in the relative roles of local and regional factors in structuring biotic communities. One approach to studying this is to examine the relationship between local species richness (LSR) and regional species richness (RSR). We examined the LSR–RSR relationship in stream diatoms, using two data sets that varied in spatial extent. At broad spatial extent ranging across drainage systems, we expected climatic and dispersal‐related factors to constrain LSR, thus resulting in a linear LSR–RSR relationship. However, at small spatial scales dispersal across sites should be unconstrained, resulting in strong local interactions and a weak or asymptotic LSR–RSR relationship. Location Boreal streams in Finland. Methods For data set 1, we sampled 15 stream riffles (localities) in each of eight drainage systems (regions), with the latitudinal gradient between the southernmost and northernmost sites being almost 1100 km. For data set 2, a locality for estimating LSR was a single stone, and each riffle represented a region for estimating RSR. We sampled 20 stones in each of eight riffles. We used linear regressions to examine the relationship between LSR and RSR across regions. We used both observed richness values, as well as values estimated with the Chao1 estimator. Results We found a relatively strong linear relationship between the Chao1‐estimated mean LSR and RSR (R2 = 0.654, P = 0.015) across drainage systems. The slope of the regression was 0.643 and it did not differ from 1.0, thus indicating linearity. At the riffle scale, however, LSR and RSR were not linearly related, and the slope of the regression (0.039) differed significantly from 1.0, indicating curvilinearity. Main conclusions These results suggest that the relationship between mean LSR and RSR varies across spatial scales in diatoms – from significantly linear at large scales to curvilinear at small scales. These plots imply strong regional enrichment in stream diatoms across drainage systems. Their diversity is thus determined largely by the composition of the regional species pool, as also in many macroorganisms. In contrast, at small spatial scales the LSR–RSR relationship implied a hard limit to local diversity, reflecting the primacy of local processes.  相似文献   

3.
Applied algal studies typically require enumeration of preserved cells. As applications of algal assessments proliferate, understanding sources of variability inherent in the methods by which abundance and species composition data are obtained becomes even more important for precision of measurements. We performed replicate counts of diatoms on permanently fixed coverglasses and all algae in Palmer–Maloney chambers to assess precision and accuracy of measurements derived from common counting methods. We counted diatoms and all algae with transects and random fields. Variability estimates (precision) of diatom density, species diversity, and species composition on permanent coverglasses were low between replicate subsamples and between replicate transects. However, average density estimates of diatoms settled on coverglasses determined with transect methods were 42–52% greater than density estimates made with random fields. This bias was due to a predictable, nonrandom distribution of diatoms on the coverglass with few diatoms near edges. Despite bias in density when counting diatoms along coverglass transects, no bias was observed in estimates of species composition. Estimates of density and taxa richness of all-algae in Palmer–Maloney chambers also had low variability among multiple transects and high similarity in species composition between transects. In addition, counting method in Palmer–Maloney chambers did not affect estimates of algal cell density, taxa richness, and species composition, which suggested that counting units were distributed randomly in the chambers. Thus, most sources of variability in sample preparation and analysis are small; however, transect counts should not be used to estimate cell density, and sufficient numbers of random fields must be counted to account for edge effects on cell distribution with material settled on permanently fixed coverglasses.  相似文献   

4.
Body size determines the strength of the latitudinal diversity gradient   总被引:5,自引:0,他引:5  
In most groups of organisms, the species richness decreases from the tropics to the poles. The mechanisms causing this latitudinal diversity gradient are still controversial. We present data from a comprehensive weighted meta-analysis on the strength of the latitudinal gradient in relation to body size. We sampled literature data on the correlation between species richness and latitude for a variety of organisms, ranging from trees to protozoa. In addition, own data on the presence of large-scale diversity patterns for diatoms were included, both for local and regional species richness. The strength of the latitudinal gradient was positively correlated to the size of the organisms. Strongest decreases of species richness to the poles was found for large organisms like trees and vertebrates, whereas meiofauna, protozoa and diatoms showed weak or no correlations between species richness and latitude. These results imply that latitudinal gradients are shaped by non-equilibrium (regional) processes and are persistent under conditions of dispersal limitation.  相似文献   

5.
1. Using a palaeolimnological approach in shallow lakes, we quantified the species richness responses of diatoms and Cladocera to phosphorus enrichment. We also examined differences in species richness responses between littoral and pelagic assemblages of our focal communities. To address both spatial and temporal relationships, our study includes an analysis of both surface sediments from 40 lakes and of a lake sediment record spanning c. 120 years. The objective of our study was to determine whether similar species richness patterns occurred across trophic levels, as well as along spatial and temporal gradients. 2. We found that both diatom and Cladocera species richness estimates significantly declined with increasing phosphorus across space and through time. When the assemblages were subdivided according to known habitat preferences, littoral biodiversity maintained a negative trend, whereas pelagic species richness tended to show no relationship with phosphorus. 3. Negative productivity–diversity patterns have been observed across almost all palaeolimnological studies that span large productivity gradients. This congruence in patterns is most likely due to the similarity in data collection methods and in focal communities studied. The contrasting responses between littoral and pelagic assemblages may be explained by the differences in physical habitat and the pool of taxa in each of these environments. Consistent with the literature, we found statistical support for the idea that littoral diversity declines could be explained by an interaction between macrophytes and nutrients along strong trophic gradients. The general lack of a diversity response in our pelagic assemblages could be attributable to the limited pool of subfossil taxa. The response of the pelagic diatom could also be related to their broad range of nutrient tolerances. 4. The observed negative response of species richness to phosphorus enrichment, particularly in the littoral assemblages, has implications for ecosystems functioning because communities with reduced biodiversity often are less resilient to anthropogenic change.  相似文献   

6.
Aim To investigate how plant diversity of whole islands (‘gamma’) is related to alpha and beta diversity patterns among sampling plots within each island, thus exploring aspects of diversity patterns across scales. Location Nineteen islands of the Aegean Sea, Greece. Methods Plant species were recorded at both the whole‐island scale and in small 100 m2 plots on each island. Mean plot species richness was considered as a measure of alpha diversity, and six indices of the ‘variation’‐type beta diversity were also applied. In addition, we partitioned beta diversity into a ‘nestedness’ and a ‘replacement’ component, using the total species richness recorded in all plots of each island as a measure of ‘gamma’ diversity. We also applied 10 species–area models to predict the total observed richness of each island from accumulated plot species richness. Results Mean alpha diversity was not significantly correlated with the overall island species richness or island area. The range of plot species richness for each island was significantly correlated with both overall species richness and area. Alpha diversity was not correlated with most indices of beta diversity. The majority of beta diversity indices were correlated with whole‐island species richness, and this was also true for the ‘replacement’ component of beta diversity. The rational function model provided the best prediction of observed island species richness, with Monod’s and the exponential models following closely. Inaccuracy of predictions was positively correlated with the number of plots and with most indices of beta diversity. Main conclusions Diversity at the broader scale (whole islands) is shaped mainly by variation among small local samples (beta diversity), while local alpha diversity is not a good predictor of species diversity at broader scales. In this system, all results support the crucial role of habitat diversity in determining the species–area relationship.  相似文献   

7.
The composition and distribution of the main unicellular eukaryotic groups (diatom algae, ciliates, dinoflagellates (DF), other phototrophic (PF) and heterotrophic flagellates (HF)) were investigated in sandy sediments at five stations allocated across the tidal sheltered beach of the White Sea. Overall, 75 diatoms, 98 ciliates, 16 DF, 3 PF and 34 HF species were identified; some are new records for the White Sea. Common species for each group are illustrated. Diatoms and ciliates showed high alpha-diversity (species richness per sample), whereas flagellates were characterized by high beta-diversity (species turnover across the intertidal flat). Each group demonstrated its own spatial pattern that was best matched with its own subset of abiotic variables, reflecting group-specific responses to environmental gradients. Species richness increased from the upper intertidal zone seaward for ciliates but decreased for HF, whereas autotrophs showed a relatively uniform pattern with a slight peak at the mid-intertidal zone. Across the littoral zone, all groups showed distinct compositional changes; however, the position of the boundary between “upper” and “lower” intertidal communities varied among groups. Most of the species found at Ryazhkov Island are known from many other regions worldwide, indicating a wide geographic distribution of microbial eukaryotic species.  相似文献   

8.
珠三角河网浮游植物物种丰富度时空特征   总被引:3,自引:2,他引:1  
贾慧娟  赖子尼  王超 《生态学报》2019,39(11):3816-3827
对2012年珠三角河网浮游植物物种丰富度的时空特征进行了系统阐析。季节上,枯水期的物种丰度差异大,丰水期差异小;空间上,广州周边及河网中部个别站位的总种数高于其他站位。不同季节的空间特征显示,枯水期的物种丰度自西江沿线、河网中部、广州周边呈递增趋势;而丰水期呈现三角洲两侧的物种丰富度高于河网中部。各类群相对组成结果显示,硅藻在枯水季节占绝对优势,丰水期优势下降;空间上广州周边站位硅藻百分比明显低于其他站位。分析原因,径流相关的补充和稀释作用和水体搅动引起的底层藻类的悬浮补充不仅影响物种丰富度的季节变动,也影响不同类群的相对组成;水体交换能力和营养盐分别是决定丰水期和枯水期物种丰富度空间分布的关键因素。  相似文献   

9.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   

10.
Buffalo Creek is in a forested watershed in eastern Pennsylvania and is relatively acid in upstream reaches (pH~6), becoming alkaline downstream (pH~8). Temperature, nitrogen (NO3-N) and phosphorus (O-PO4) increase significantly downstream whereas N/P declines. Nutrient-diffusing substrata were deployed in triplicate at an upstream and downstream site. Six treatments included two concentrations of nitrate, two concentrations of phosphate, nitrogen + phosphate, and a control. Substrata were collected after 18 days, scraped and analyzed for accrual of chlorophyll a and algal community structure. Chlorophyll a and algal biovolume were greatest downstream across all nutrient treatments. At the community level, accrual appeared to be limited by phosphorus at upstream sites. Downstream accrual also may have been phosphorus-limited, but the results were equivocal. Benthic algae on all treatments at both sites were ~96% diatoms. Minimal overlap in species composition was observed between upstream and downstream sites. Of the 75 species of diatoms encountered in the study, 58 species did not occur at the upstream site and 10 species did not occur at the downstream site. The upstream site was depauperate in species and dominated by Eunotia exigua (Bréb. ex Kütz.) Rabh., which showed a positive response to phosphorus and accounted for over 50% of the biomass across treatments. The downstream site showed a four-fold increase in species richness. Communities at this site contained some species that appeared to be phosphorus-limited, e.g. Melosira varians Ag., and others that seemed to be nitrogen-limited, e.g. Diatoma vulgare Bory and Navicula seminulum Grun. We conclude that extreme conditions upstream (low pH, high N/P) result in a species-poor community dominated by acidophilous phosphorus-limited diatoms. Increases in downstream nutrients and pH result in a relatively rich and diverse community.  相似文献   

11.
Exploring elevational patterns in species richness and their underlying mechanisms is a major goal in biogeography and community ecology. Reptiles can be powerful model organisms to examine biogeographical patterns. In this study, we examine the elevational patterns of reptile species richness and test a series of hypotheses that may explain them. We sampled reptile communities along a tropical elevational gradient (100–1,500 m a.s.l.) in the Western Ghats of India using time‐constrained visual encounter surveys at each 100‐m elevation zone for 3 years. First, we investigated species richness patterns across elevation and the support of mid‐domain effect and Rapoport's rule. Second, we tested whether a series of bioclimatic (temperature and tree density) and spatial (mid‐domain effect and area) hypotheses explained species richness. We used linear regression and AICc to compare competing models for all reptiles, and each of the subgroups: snakes, lizards, and Western Ghats’ endemics. Overall reptile richness and lizard richness both displayed linear declines with elevation, which was best explained by temperature. Snake richness and endemic species richness did not systematically vary across elevation, and none of the potential hypotheses explained variation in them. This is the first standardized sampling of reptiles along an elevational gradient in the Western Ghats, and our results agree with the global view that temperature is the primary driver of ectotherm species richness. By establishing strong reptile diversity–temperature associations across elevation, our study also has implications for the impact of future climate change on range‐restricted species in the Western Ghats.  相似文献   

12.
Although elevational gradients in microbial biodiversity have attracted increasing attention recently, the generality in the patterns and underlying mechanisms are still poorly resolved. Further, previous studies focused mostly on species richness, while left understudied evenness, another important aspect of biodiversity. Here, we studied the elevational patterns in species richness and evenness of stream biofilm bacteria and diatoms in six mountains in Asia and Europe. We also reviewed published results for elevational richness patterns for soil and stream microbes in a literature analysis. Our results revealed that even within the same ecosystem type (that is, stream) or geographical region, bacteria and diatoms showed contrasting patterns in diversity. Stream microbes, including present stream data, tend to show significantly increasing or decreasing elevational patterns in richness, contrasting the findings for soil microbes that typically showed nonsignificant or significantly decreasing patterns. In all six mountains for bacteria and in four mountains for diatoms, species richness and evenness were positively correlated. The variation in bacteria and diatom richness and evenness were substantially explained by anthropogenic driven factors, such as total phosphorus (TP). However, diatom richness and evenness were also related to different main drivers as richness was mostly related to pH, while evenness was most explained by TP. Our results highlight the lack of consistent elevational biodiversity patterns of microbes and further indicate that the two facets of biodiversity may respond differently to environmental gradients.  相似文献   

13.
Abstract: Rock outcrops are considered as habitat or ecological islands discordant from the adjacent matrix. The floras of 24 aggregated outcrop regions within the New England Batholith of eastern Australia were sampled and investigations made into species range differences. A measure is developed to describe differences in species range sizes across floras (range saturation: RS). Range sizes increased in areas with higher incident radiation (higher available energy) and concordantly in regions with a greater proportion of hemi‐parasites, epiphytes and herbs (which were demonstrated to have large range sizes). Differences in species’ range sizes of granite outcrop occurring species on the New England Batholith of eastern Australia at different scales and extents are regressed against selected environmental variables and against local species richness and abundance. Although species’ range size has been linked in a number of systems with increased species richness and local species abundance, such correlations were not obtained in this investigation. Analyses of species’ range sizes could not be used to infer directly on processes that maintain species richness or abundance within the granitic outcrop flora of the New England Batholith.  相似文献   

14.
The species richness and community composition of the diatom communities were studied in the Baltic Sea, Northern Europe, to enhance knowledge about the diversity of these organisms in a brackish water ecosystem. Many organisms in the Baltic Sea have been studied extensively, but studies investigating littoral diatoms are scarce. The goal of this study was to examine the importance of climatic, spatial and water physicochemical variables as drivers of epilithic diatoms in the Gulf of Finland and the Gulf of Bothnia. The variation in species richness was best explained by pH, total phosphorus and total nitrogen. Redundancy Analysis indicated that the most important factors correlating with species composition were air temperature, silicon, total phosphorus, water temperature, salinity and pH. Variation Partitioning showed that the species composition was mostly affected by climatic and spatial variables, whereas physicochemical variables had little impact. However, the strongest factor was the combined influence of climatic, spatial and physicochemical variables. The results suggest that diatom species richness in the northern Baltic Sea is primarily regulated by local factors, while climatic and spatial variables have little impact on richness. Species composition is mostly affected by climatic and spatial variables. We conclude that understanding the distribution patterns of Baltic Sea diatoms requires the inclusion of climatic, spatial and water chemistry variables.  相似文献   

15.
Diversity and productivity of primary producers are known to be influenced simultaneously by resource availability and resource ratio, but the relative importance of these two factors differed among studies and so far only entire phytoplankton communities were investigated which might ignore specific nutrient requirements and stoichiometric plasticity of different functional groups. We measured nutrient availability (DIN, total N [TN], total P [TP]), nutrient imbalance (TN:TP, DIN:TP, N:Pseston), species richness, and abundance of the whole phytoplankton community, as well as those specific for cyanobacteria, diatoms, and dinoflagellates in Cau Hai lagoon in Vietnam. We determined the correlation among these variables, using structural equation modeling. The models applied to the whole phytoplankton community indicated that the nutrient availability (particularly TP and DIN) drove variation in phytoplankton abundance and richness, and that abundance also depended on species richness. The models applied to different functional groups differed considerably from the entire community and among each other, and only a part of the models was significant. The relationship between nutrient availability (mainly TP) and abundance was driven by cyanobacteria, and the relationship between nutrient imbalance (only with N:Pseston) and species richness was driven by diatoms. Remarkably, the positive relationship between species richness and abundance, as consistently observed for the whole phytoplankton community, was only observed for one of the three functional groups (diatoms), indicating that resource complementarity occurs particularly among species of different functional groups. Our results emphasized that nutrient availability (TP and to a lesser extent DIN) as well as nutrient imbalance (albeit only with N:Pseston as proxy) were driving factors for the phytoplankton community in the Cau Hai lagoon and hence alterations in both of these factors leading to a shift in phytoplankton species composition and productivity.  相似文献   

16.
Understanding large-scale patterns of biodiversity and their drivers remains central in ecology. Many hypotheses have been proposed, including hydrothermal dynamic hypothesis, tropical niche conservatism hypothesis, Janzen’s hypothesis and a combination model containing energy, water, seasonality and habitat heterogeneity. Yet, their relative contributions to groups with different lifeforms and range sizes remain controversial, which have limited our ability to understand the general mechanisms underlying species richness patterns. Here we evaluated how lifeforms and species range sizes influenced the relative contributions of these three hypotheses to species richness patterns of a tropical family Moraceae. The distribution data of Moraceae species at a spatial resolution of 50km ×50 km and their lifeforms (i.e. shrubs, small trees and large trees) were compiled. The species richness patterns were estimated for the entire family, different life forms and species with different range sizes separately. The effects of environmental variables on species richness were analyzed, and relative contributions of different hypotheses were evaluated across life forms and species range size groups. The species richness patterns were consistent across different species groups and the species richness was the highest in Sichuan, Guangzhou and Hainan provinces, making these provinces the hotspots of this family. Climate seasonality is the primary factor in determining richness variation of Moraceae. The best combination model gave the largest explanatory power for Moraceae species richness across each group of range size and life forms followed by the hydrothermal dynamic hypothesis, Janzen’s hypothesis and tropical niche conservatism hypothesis. All these models has a large shared effects but a low independent effect (< 5%), except rare species. These findings suggest unique patterns and mechanisms underlying rare species richness and provide a theoretical basis for protection of the Moraceae species in China.  相似文献   

17.
Microeukaryotic plankton are important components of aquatic environments and play key roles in marine microbial food webs; however, little is known about their genetic diversity in subtropical offshore areas. Here we examined the community composition and genetic diversity of the microeukaryotic plankton in Xiamen offshore water by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis), clone-based sequencing and Illumina based sequencing. The Illumina MiSeq sequencing revealed a much (approximately two orders of magnitude) higher species richness of the microeukaryotic community than DGGE, but there were no significant difference in species richness and diversity among the northern, eastern, southern or western stations based on both methods. In this study, Copepoda, Ciliophora, Chlorophyta, Dinophyceae, Cryptophyta and Bacillariophyta (diatoms) were the dominant groups even though diatoms were not detected by DGGE. Our Illumina based results indicated that two northern communities (sites N2 and N3) were significantly different from others in having more protozoa and fewer diatoms. Redundancy analysis (RDA) showed that both temperature and salinity were the significant environmental factors influencing dominant species communities, whereas the full microeukaryotic community appeared to be affected by a complex of environmental factors. Our results suggested that extensive sampling combined with more deep sequencing are needed to obtain the complete diversity of the microeukaryotic community, and different diversity patterns for both abundant and rare taxa may be important in evaluating the marine ecosystem health.  相似文献   

18.
Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr?1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr?1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.  相似文献   

19.
为了解广东省鉴江水系底栖硅藻多样性和时空分布特征,对全流域进行了底栖硅藻采样调查。结果表明,从19个采样点4次采样中共检出底栖硅藻10科52属242种,其中舟形藻属(Navicula)、菱形藻属(Nitzschia)和异极藻属(Gomphonema)是优势类群,出现频次和相对丰度较高。硅藻多样性指数(丰富度、真香农多样性指数和真辛普森多样性指数)随河流等级呈现一定的空间分布特征,但它们季节变化不明显。底栖硅藻群落相异性在上游和下游河段较高,从一级到三级河流递减,四级河流又增加。底栖硅藻群落结构空间变化明显,季节变化显著。群落丰富度的稀疏曲线表明,热带河流底栖硅藻群落以400个体计数,不能完整反映底栖硅藻多样性。这些为鉴江水系河流健康监测和水生态保护奠定了基础。  相似文献   

20.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号