首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species migrations in response to climate change have already been observed in many taxonomic groups worldwide. However, it remains uncertain if species will be able to keep pace with future climate change. Keeping pace will be especially challenging for tropical lowland rainforests due to their high velocities of climate change combined with high rates of deforestation, which may eliminate potential climate analogs and/or increase the effective distances between analogs by blocking species movements. Here, we calculate the distances between current and future climate analogs under various climate change and deforestation scenarios. Under even the most sanguine of climate change models (IPSL_CM4, A1b emissions scenario), we find that the median distance between areas in the Amazon rainforest and their closest future (2050) climate analog as predicted based on just temperature changes alone is nearly 300 km. If we include precipitation, the median distance increases by over 50% to >475 km. Since deforestation is generally concentrated in the hottest and driest portions of the Amazon, we predict that the habitat loss will have little direct impact on distances between climate analogs. If, however, deforested areas also act as a barrier to species movements, nearly 30% or 55% of the Amazon will effectively have no climate analogs anywhere in tropical South America under projections of reduced or Business‐As‐Usual deforestation, respectively. These ‘disappearing climates’ will be concentrated primarily in the southeastern Amazon. Consequently, we predict that several Amazonian ecoregions will have no areas with future climate analogs, greatly increasing the vulnerability of any populations or species specialized on these conditions. These results highlight the importance of including multiple climatic factors and human land‐use in predicting the effects of climate change, as well as the daunting challenges that Amazonian diversity faces in the near future.  相似文献   

2.
Historically, many species moved great distances as climates changed. However, modern movements will be limited by the patterns of human‐dominated landscapes. Here, we use a combination of projected climate‐driven shifts in the distributions of 2903 vertebrate species, estimated current human impacts on the landscape, and movement models, to determine through which areas in the western hemisphere species will likely need to move to track suitable climates. Our results reveal areas with projected high densities of climate‐driven movements – including, the Amazon Basin, the southeastern United States and southeastern Brazil. Some of these regions, such as southern Bolivia and northern Paraguay, contain relatively intact landscapes, whereas others such as the southeastern United States and Brazil are heavily impacted by human activities. Thus, these results highlight both critical areas for protecting lands that will foster movement, and barriers where human land‐use activities will likely impede climate‐driven shifts in species distributions.  相似文献   

3.
There is increasing consensus that the global climate will continue to warm over the next century. The biodiversity-rich Amazon forest is a region of growing concern because many global climate model (GCM) scenarios of climate change forecast reduced precipitation and, in some cases, coupled vegetation models predict dieback of the forest. To date, fires have generally been spatially co-located with road networks and associated human land use because almost all fires in this region are anthropogenic in origin. Climate change, if severe enough, could alter this situation, potentially changing the fire regime to one of increased fire frequency and severity for vast portions of the Amazon forest. High moisture contents and dense canopies have historically made Amazonian forests extremely resistant to fire spread. Climate will affect the fire situation in the Amazon directly, through changes in temperature and precipitation, and indirectly, through climate-forced changes in vegetation composition and structure. The frequency of drought will be a prime determinant of both how often forest fires occur and how extensive they become. Fire risk management needs to take into account landscape configuration, land cover types and forest disturbance history as well as climate and weather. Maintaining large blocks of unsettled forest is critical for managing landscape level fire in the Amazon. The Amazon has resisted previous climate changes and should adapt to future climates as well if landscapes can be managed to maintain natural fire regimes in the majority of forest remnants.  相似文献   

4.
To increase resource gain, many herbivores pace their migration with the flush of nutritious plant green‐up that progresses across the landscape (termed “green‐wave surfing”). Despite concerns about the effects of climate change on migratory species and the critical role of plant phenology in mediating the ability of ungulates to surf, little is known about how drought shapes the green wave and influences the foraging benefits of migration. With a 19 year dataset on drought and plant phenology across 99 unique migratory routes of mule deer (Odocoileus hemionus) in western Wyoming, United States, we show that drought shortened the duration of spring green‐up by approximately twofold (2.5 weeks) and resulted in less sequential green‐up along migratory routes. We investigated the possibility that some routes were buffered from the effects of drought (i.e., routes that maintained long green‐up duration irrespective of drought intensity). We found no evidence of drought‐buffered routes. Instead, routes with the longest green‐up in non‐drought years also were the most affected by drought. Despite phenological changes along the migratory route, mule deer closely followed drought‐altered green waves during migration. Migrating deer did not experience a trophic mismatch with the green wave during drought. Instead, the shorter window of green‐up caused by drought reduced the opportunity to accumulate forage resources during rapid spring migrations. Our work highlights the synchronization of phenological events as an important mechanism by which climate change can negatively affect migratory species by reducing the temporal availability of key food resources. For migratory herbivores, climate change poses a new and growing threat by altering resource phenology and diminishing the foraging benefit of migration.  相似文献   

5.
Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic‐based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high‐resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home‐range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co‐occurring species.  相似文献   

6.
MigClim: Predicting plant distribution and dispersal in a changing climate   总被引:1,自引:0,他引:1  
Aim Many studies have forecasted the possible impact of climate change on plant distributions using models based on ecological niche theory, but most of them have ignored dispersal‐limitations, assuming dispersal to be either unlimited or null. Depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under‐ or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of ‘potentially suitable’ and ‘potentially colonizable’ habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed Mig Clim, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. Mig Clim implements various parameters, such as dispersal distance, increase in reproductive potential over time, landscape fragmentation or long‐distance dispersal. Location Western Swiss Alps. Methods Using our Mig Clim model, several simulations were run for two virtual species by varying dispersal distance and other parameters. Each simulation covered the 100‐year period 2001–2100 and three different IPCC‐based temperature warming scenarios were considered. Results of dispersal‐limited projections were compared with unlimited and no‐dispersal projections. Results Our simulations indicate that: (1) using realistic parameter values, the future potential distributions generated using Mig Clim can differ significantly (up to more than 95% difference in colonized surface) from those that ignore dispersal; (2) this divergence increases under more extreme climate warming scenarios and over longer time periods; and (3) the uncertainty associated with the warming scenario can be as large as the one related to dispersal parameters. Main conclusions Accounting for dispersal, even roughly, can importantly reduce uncertainty in projections of species distribution under climate change scenarios.  相似文献   

7.
Ecuador has some of the greatest biodiversity in the world, sheltering global biodiversity hotspots in lowland and mountain regions. Climate change will likely have a major effect on these regions, but the consequences for faunal diversity and conservation remain unclear. To address this issue, we used an ensemble of eight species distribution models to predict future shifts and identify areas of high changes in species richness and species turnover for 201 mammals. We projected the distributions using two different climate change scenarios at the 2050 horizon and contrasted two extreme dispersal scenarios (no dispersal vs. full dispersal). Our results showed extended distributional shifts all over the country. For most groups, our results predicted that the current diversity of mammals in Ecuador would decrease significantly under all climate change scenarios and dispersal assumptions. The Northern Andes and the Amazonian region would remain diversity hotspots but with a significant decrease in the number of species. All predictions, including the most conservative scenarios in terms of dispersal and climate change, predicted major changes in the distribution of mammalian species diversity in Ecuador. Primates might be the most severely affected because they would have fewer suitable areas, compared with other mammals. Our work emphasizes the need for sound conservation strategies in Ecuador to mitigate the effects of climate change  相似文献   

8.
Climate change and landscape fragmentation are considered to be the main treats to biodiversity. In this study, probable alteration of future species distribution was tested based on the association of landscape fragmentation and climate change scenarios compared to the classical approach that assumed an unchanged landscape. Also, projected range shifts including realistic dispersal scenarios were compared with classical models, in which no or full dispersal has been supposed.A GIS-based cellular automata model, MigClim, was implemented to projection of future distribution over the 21st century for three plant species in a study area of the central Germany. For each species, simulations were run for four dispersal scenarios (full dispersal, no dispersal, realistic dispersal, and realistic dispersal with long-distance dispersal events), two landscape fragmentation (static and dynamic change) and two climate change (RCP4.5 and RCP8.5) scenarios. In this research, temporal satellite data were utilized to simulate landscape changes by the use of a hybrid (CA-Markov) model for the years 2020, 2040, 2060 and 2080.A significant difference appears to be between the simulations of realistic dispersal limitations and those considering full or no dispersal for projected future distributions. Although simulations accounting for dispersal limitations produced, for our study area, results that were closer to no dispersal than to full dispersal. Additionally, our results revealed that change in landscape fragmentation is more effective than the climate change impacts on species distributions in this study.  相似文献   

9.
Long‐distance dispersal (LDD) is a pivotal process for plants determining their range of distribution and promoting gene flow among distant populations. Most fleshy‐fruited species rely on frugivorous vertebrates to disperse their seeds across the landscape. While LDD events are difficult to record, a few ecological studies have shown that birds move a sizeable number of ingested seeds across geographic barriers, such as sea straits. The foraging movements of migrant frugivores across distant populations, including those separated by geographic barriers, creates a constant flow of propagules that in turn shapes the spatial distributions of the genetic variation in populations. Here, we have analysed the genetic diversity and structure of 74 populations of Pistacia lentiscus, a fleshy‐fruited shrub widely distributed in the Mediterranean Basin, to elucidate whether the Mediterranean Sea acts as a geographic barrier or alternatively whether migratory frugivorous birds promote gene flow among populations located on both sides of the sea. Our results show reduced genetic distances among populations, including intercontinental populations, and they show a significant genetic structure across an eastern‐western axis. These findings are consistent with known bird migratory routes that connect the European and African continents following a north‐southwards direction during the fruiting season of many fleshy‐fruited plants. Further, approximate Bayesian analysis failed to explain the observed patterns as a result of historical population migrations at the end of Last Glacial Maximum. Therefore, anthropic and/or climatic changes that would disrupt the migratory routes of frugivorous birds might have genetic consequences for the plant species they feed upon.  相似文献   

10.
11.
Aim The dimensions of species vulnerability to climate change are complex, and this impedes efforts to provide clear advice for conservation planning. In this study, we used a formal framework to assess species vulnerability to climate change quantifying exposure, sensitivity and adaptive capacity and then used this information to target areas for reducing vulnerability at a regional scale. Location The 6500‐km2 Mount Lofty Ranges region in South Australia. Methods We quantified the vulnerability of 171 plant species in a fragmented yet biologically important agro‐ecological landscape, typical of many temperate zones globally. We specified exposure, using three climate change scenarios; sensitivity, as the adverse impact of climate change on species’ spatial distribution; and adaptive capacity, as the ability of species to migrate calculated using dispersal kernels. Priority areas for reducing vulnerability were then identified by incorporating these various components into a single priority index. Results Climate change had a variable impact on species distributions. Those species whose range decreased or shifted geographically were attributed higher sensitivity than those species that increased geographic range or remained unchanged. The ability to adapt to range changes in response to shifting climates varies both spatially and between species. Areas of highest priority for reducing vulnerability were found at higher altitudes and lower latitudes with increasing severity of climate change. Main conclusions Our study demonstrates the use of a single spatially explicit index that identifies areas in the landscape for targeting specific conservation and restoration actions to reduce species vulnerability to climate change. Our index can be transferred to other regions around the world in which climate change poses an increasing threat to native species.  相似文献   

12.
Contemporary landscapes are subject to a multitude of human‐derived stressors. Effects of such stressors are increasingly realized by population declines and large‐scale extirpation of taxa worldwide. Most notably, cumulative effects of climate and landscape change can limit species’ local adaptation and dispersal capabilities, thereby reducing realized niche space and range extent. Resolving the cumulative effects of multiple stressors on species persistence is a pressing challenge in ecology, especially for declining species. For example, wolverines (Gulo gulo L.) persist on only 40% of their historic North American range. While climate change has been shown to be a mechanism of range retractions, anthropogenic landscape disturbance has been recently implicated. We hypothesized these two interact to effect declines. We surveyed wolverine occurrence using camera trapping and genetic tagging at 104 sites at the wolverine range edge, spanning a 15,000 km2 gradient of climate, topographic, anthropogenic, and biotic variables. We used occupancy and generalized linear models to disentangle the factors explaining wolverine distribution. Persistent spring snow pack—expected to decrease with climate change—was a significant predictor, but so was anthropogenic landscape change. Canid mesocarnivores, which we hypothesize are competitors supported by anthropogenic landscape change, had comparatively weaker effect. Wolverine population declines and range shifts likely result from climate change and landscape change operating in tandem. We contend that similar results are likely for many species and that research that simultaneously examines climate change, landscape change, and the biotic landscape is warranted. Ecology research and species conservation plans that address these interactions are more likely to meet their objectives.  相似文献   

13.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

14.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

15.
In the coming century, forecast climate changes caused by increasing greenhouse gases may produce dramatic shifts in tree species distributions and the rates at which individual tree species sequester carbon or release carbon back to the atmosphere. The species composition and carbon storage capacity of northern Wisconsin (USA) forests are expected to change significantly as a result. Projected temperature changes are relatively large (up to a 5.8°C increase in mean annual temperature) and these forests encompass a broad ecotone that may be particularly sensitive to climate change. Our objective was to estimate the combined effects of climate change, common disturbances, and species migrations on regional forests using spatially interactive simulations. Multiple scenarios were simulated for 200 years to estimate aboveground live biomass and tree species composition. We used a spatially interactive forest landscape model (LANDIS‐II) that includes individual tree species, biomass accumulation and decomposition, windthrow, harvesting, and seed dispersal. We used data from two global circulation models, the Hadley Climate Centre (version 2) and the Canadian Climate Center (version 1) to generate transient growth and decomposition parameters for 23 species. The two climate change scenarios were compared with a control scenario of continuing current climate conditions. The results demonstrate how important spatially interactive processes will affect the aboveground live biomass and species composition of northern Wisconsin forests. Forest composition, including species richness, is strongly affected by harvesting, windthrow, and climate change, although five northern species (Abies balsamea, Betula papyrifera, Picea glauca, Pinus banksiana, P. resinosa) are lost in both climate scenarios regardless of disturbance scenario. Changes in aboveground live biomass over time are nonlinear and vary among ecoregions. Aboveground live biomass will be significantly reduced because of species dispersal and migration limitations. The expected shift towards southern oaks and hickory is delayed because of seed dispersal limitations.  相似文献   

16.
A climatic basis for microrefugia: the influence of terrain on climate   总被引:1,自引:0,他引:1  
There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change.  相似文献   

17.
Range shift, a widespread response to climate change, will depend on species abilities to withstand warmer climates. However, these abilities may vary within species and such intraspecific variation can strongly impact species responses to climate change. Facing warmer climates, individuals should disperse according to their thermal optimum with consequences for species range shifts. Here, we studied individual dispersal of a reptile in response to climate warming and preferred temperature using a semi‐natural warming experiment. Individuals with low preferred temperatures dispersed more from warmer semi‐natural habitats, whereas individuals with higher preferred temperatures dispersed more from cooler habitats. These dispersal decisions partly matched phenotype‐dependent survival rates in the different thermal habitats, suggesting adaptive dispersal decisions. This process should result into a spatial segregation of thermal phenotypes along species moving ranges which should facilitate local adaptation to warming climates. We therefore call for range shift models including intraspecific variation in thermal phenotype and dispersal decision.  相似文献   

18.
Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change‐related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N = 426 species) under a best‐case scenario and a worst‐case scenario. Generalized linear models were used to examine whether these changes varied according to region, conservation status, range extent and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst‐case scenario, 74% of Neotropical forest‐dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species' ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale.  相似文献   

19.
The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long‐lived, they may not be able to cope with ongoing climatic changes. Here, we coupled ecological niche modelling (ENM) and genetic simulations to forecast the effects of climatic changes on the genetic diversity and the structure of genetic clusters. Genetic simulations were conditioned to climatic variables and restricted to plant dispersal and establishment. We used a Neotropical savanna tree as species model that shows a preference for hot and drier climates, but with low temperature seasonality. The ENM predicts a decreasing range size along the more severe future climatic scenario. Additionally, genetic diversity and allelic richness also decrease with range retraction and climatic genetic clusters are lost for both future scenarios, which will lead genetic variability to homogenize throughout the landscape. Besides, climatic genetic clusters will spatially reconfigure on the landscape following displacements of climatic conditions. Our findings indicate that climate change effects will challenge population adaptation to new environmental conditions because of the displacement of genetic ancestry clusters from their optimal conditions.  相似文献   

20.
Species distribution modelling is an easy, persuasive and useful tool for anticipating species distribution shifts under global change. Numerous studies have used only climate variables to predict future potential species range shifts and have omitted environmental factors important for determining species distribution. Here, we assessed the importance of the edaphic dimension in the niche‐space definition of Quercus pubescens and in future spatial projections under global change over the metropolitan French forest territory. We fitted two species distribution models (SDM) based on presence/absence data (111 013 plots), one calibrated from climate variables only (mean temperature of January and climatic water balance of July) and the other one from both climate and edaphic (soil pH inferred from plants) variables. Future predictions were conducted under two climate scenarios (PCM B2 and HadCM3 A2) and based on 100 simulations using a cellular automaton that accounted for seed dispersal distance, landscape barriers preventing migration and unsuitable land cover. Adding the edaphic dimension to the climate‐only SDM substantially improved the niche‐space definition of Q. pubescens, highlighting an increase in species tolerance in confronting climate constraints as the soil pH increased. Future predictions over the 21st century showed that disregarding the edaphic dimension in SDM led to an overestimation of the potential distribution area, an underestimation of the spatial fragmentation of this area, and prevented the identification of local refugia, leading to an underestimation of the northward shift capacity of Q. pubescens and its persistence in its current distribution area. Spatial discrepancies between climate‐only and climate‐plus‐edaphic models are strengthened when seed dispersal and forest fragmentation are accounted for in predicting a future species distribution area. These discrepancies highlight some imprecision in spatial predictions of potential distribution area of species under climate change scenarios and possibly wrong conclusions for conservation and management perspectives when climate‐only models are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号