首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Analysis of banding sequences of polytene chromosomes in Palearctic (Russian) and Nearctic (North American) Chironomus entis shows strong karyotype divergence between populations on the two continents. Four out of seven chromosomal arms in the North American C. entis karyotype are characterized by sequences found only in the Nearctic. In total, 44 banding sequences are now known for this species across the Holarctic, including 22 exclusively Palearctic, 6 Holarctic, and 16 exclusively Nearctic sequences. The degree of cytogenetic differentiation between Palearctic and Nearctic C. entis populations is an order of magnitude greater than differentiation among populations within either continent, but is only one third as great as the cytogenetic distance between the sibling species C. entis and C. plumosus. C. entis is the only sibling species of C. plumosus uncovered during cytological identification of Chironomus species from more than 50 North American lakes, indicating that the plumosus sibling-species group is much smaller in the Nearctic than in the Palearctic, where a dozen sibling species are known. Cytogenetic distance values calculated between Nearctic and Palearctic representatives of both C. entis and its sibling species C. plumosus are similar, but result from different patterns of karyotype divergence. New World C. entis is distinguished from Old World populations by the 16 uniquely Nearctic sequences, four of which occur in the homozygous state. In contrast, North American C. plumosus has fewer uniquely Nearctic sequences, and only one that occurs as a homozygote. However, four chromosomal arms in C. plumosus that are polymorphic in the Palearctic show fixation, or near fixation, of Holarctic sequences in the Nearctic C. plumosus karyotype. Thus, both the fixation of Holarctic sequences, and the occurrence or fixation of distinctly Nearctic sequences, contribute significantly to karyotype divergence. Patterns of karyotype divergence in Palearctic and Nearctic populations of different Holarctic chironomid species are discussed relative to intercontinental cytogenetic differentiation in other dipterans.  相似文献   

2.
The Agabinae, with more than 350 species, is one of the most diverse lineages of diving beetles (Dytiscidae). Using the mitochondrial genes 16S rRNA and cytochrome oxidase I we present a phylogenetic analysis based on 107 species drawn mostly from the four main Holarctic genera. Two of these genera (Ilybius and Ilybiosoma) are consistently recovered as monophyletic with strong support, Platambus is never recovered as monophyletic, and Agabus is found paraphyletic with respect to several of the species groups of Platambus. Basal relationships among the main lineages are poorly defined, although within each of them relationships are in general robust and very consistent across the parameter space, and in agreement with previous morphological analyses. In each of the two most diverse lineages (Ilybius and Agabus including part of Platambus) there is a basal split between Palearctic and Nearctic clades, estimated to have occurred in the late Eocene. The Palearctic clade in turn splits into a Western Palearctic clade and a clade containing mostly Eastern Palearctic species, and assumed to be ancestrally Eastern Palearctic but with numerous transitions to a Holarctic or Nearctic distribution. These results suggest an asymmetry in the colonization routes, as there are very few cases of transcontinental range expansions originating from the Nearctic or the Western Palearctic. According to standard clock estimates, we do not find any transcontinental shift during the Pliocene, but numerous speciation events within each of the continental or subcontinental regions.  相似文献   

3.
Abstract — Based on published phylogenies for 73 groups of Holarctic non-marine animals, interrelationships between the four Holarctic infraregions (western and eastern Nearctic, western and eastern Palearctic) are examined. The study includes analysis of resolved area cladograms, ancestral areas and dispersal indicated by cladistic subordinateness. Area relationships reflecting present continental configurations (Nearctic vs. Palearctic) dominate the material to the extent that one might speak of a general Holarctic area pattern. Paleocontinental (western Nearctic+eastern Palearctic, western Palearctic+eastern Nearctic) and disjunct patterns are relatively more frequent among groups of higher taxonomic rank. The western Nearctic seems to have played a bigger role than the other infraregions as a center of origin. Two computer programs for constructing resolved area cladograms, viz., COMPONENT 1.5 and COMPONENT 2.0, are compared. The three standard assumptions for biogeographical analysis are compared and arguments are presented in favour of Assumption 0.  相似文献   

4.
A comprehensive DNA barcoding library is very useful for rapid identification and detection of invasive pest species. We tested the performance of species identification in the economically most damaging group of wood‐boring insects – the bark and ambrosia beetles – with particular focus on broad geographical sampling across the boreal Palearctic forests. Neighbour‐joining and Bayesian analyses of cytochrome oxidase I (COI) sequences from 151 species in 40 genera revealed high congruence between morphology‐based identification and sequence clusters. Inconsistencies with morphological identifications included the discovery of a likely cryptic Nearctic species of Dryocoetes autographus, the possible hybrid origin of shared mitochondrial haplotypes in Pityophthorus micrographus and P. pityographus, and a possible paraphyletic Xyleborinus saxeseni. The first record of Orthotomicus suturalis in North America was confirmed by DNA barcoding. The mitochondrial data also revealed consistent divergence across the Palearctic or Holarctic, confirmed in part by data from the large ribosomal subunit (28S). Some populations had considerable variation in the mitochondrial barcoding marker, but were invariant in the nuclear ribosomal marker. These findings must be viewed in light of the high number of nuclear insertions of mitochondrial DNA (NUMTs) detected in eight bark beetle species, suggesting the possible presence of additional cryptic NUMTs. The occurrence of paralogous COI copies, hybridization or cryptic speciation demands a stronger focus on data quality assessment in the construction of DNA barcoding databases.  相似文献   

5.
The Palearctic species of the ant genus Myrmica are well studied. In contrast, the taxonomy of the Nearctic species is outdated, making identification impossible. We collected Myrmica samples in the Holarctic and investigated their diversity using mtDNA data. We analysed a barcode sequence of the Cytochrome Oxidase I gene for 57 Palearctic and 293 Nearctic Myrmica samples. We used sequences of known Palearctic species to search for Myrmica barcode patterns. All but one Palearctic species groups were recovered. The Nearctic diversity was much higher than known. We retrieved the punctiventris, crassirugis and incompleta groups, and established nine additional tentative species groups. Genetic distance analysis revealed a large overlap of intra- and inter-specific distances in Palearctic species and species groups. We could not find a variation gap to separate Nearctic sequences into species with COI data only. Variation in scape morphology divided two genetic groups further. Scape morphology correlated with most molecular groups, except three specimens. Our results illustrate that barcoding, using only a limited amount of genetic information, cannot serve as a universal proxy for taxonomy and species demarcation. It should be considered a first step in understanding the taxonomic diversity of an unknown group of organisms.  相似文献   

6.
The data on the structure and level of chromosomal polymorphism in natural populations of species of the genus Chironomus are summarized. A very high level of chromosomal polymorphism was noted for most species. Paracentric inversions prevailed among the chromosomal rearrangements found in natural populations. Changes in the set and frequency of inversion sequences are the most important factor of cytogenetic divergence of populations. Several cytogenetic types of populations were distinguished. The Palaearctic and Nearctic populations of Holarctic species diverged to a greater extent due to the formation of endemic Palearctic and Nearctic inversion sequences. The sequences common for both regions indicated a common ancestry of the populations. The cytogenetic distances between the Palearctic and Nearctic populations are greater by an order of magnitude than those between populations within each zoogeographic region. Divergence of species karyotypes was found to result from fixation of different inversion sequences in the course of evolution. The karyotypes of Palearctic and Nearctic species mainly differ by the presence of endemic Palearctic and Nearctic banding sequences. Several basic sequences common for some species allow the cytogenetic history of their origin to be revealed. A NJ phylogenetic tree was built for the genus Chironomus, demonstrating chromosomal evolution of its species.  相似文献   

7.
Aim Boreal forest bird species appear to be divided into lineages endemic to each northern continent, in contrast to Holarctic species living in open habitats. For example, the three-toed woodpecker (Picoides tridactylus) and the winter wren (Troglodytes troglodytes) have divergent Nearctic and Palaearctic mitochondrial DNA clades. Furthermore, in these species, the next closest relative of the Nearctic/Palaearctic sister lineages is the Nearctic clade, suggesting that the Palaearctic may have been colonized from the Nearctic. The aim of this study is to test this pattern of intercontinental divergence and colonization in another Holarctic boreal forest resident – the pine grosbeak (Pinicola enucleator). Location The Holarctic. Methods We sequenced the mitochondrial ND2 gene and Z-specific intron 9 of the ACO1 gene for 74 pine grosbeaks collected across the Holarctic. The sequences were used to reconstruct the phylogeographical history of this species using maximum likelihood analysis. Results We discovered two distinct mitochondrial and Z-specific lineages in the Nearctic and one in the Palaearctic. The two Nearctic mtDNA lineages, one in the northern boreal forest and one in south-western mountain forest, were more closely related to each other than either was to the Palaearctic clade. Two Nearctic Z-chromosome clades were sympatric in the boreal and south-western mountain forests. Unlike the topology of the mtDNA tree, the relationship among the Z-chromosome clades was the same as in the three-toed woodpecker and winter wren [Nearctic (Nearctic, Palaearctic)]. The Palaearctic Z-chromosome clade had much lower genetic diversity and a single-peak mismatch distribution with a mean < 25% of that for either Nearctic region, both of which had ragged mismatch distributions. Main conclusions Our data suggest that, similar to the other boreal forest species, the pine grosbeak has divergent lineages in each northern continent and could have colonized the Palaearctic from the Nearctic. Compared with many Holarctic birds inhabiting open habitats, boreal forest species appear to be more differentiated, possibly because the boreal forests of the Nearctic and Palaearctic have been isolated since the Pliocene (3.5 Ma).  相似文献   

8.
There are 14 species of marmots distributed across the Holarctic, and despite extensive systematic study, their phylogenetic relationships remain largely unresolved. In particular, comprehensive studies have been lacking. A well-supported phylogeny is needed to place the numerous ecological and behavioral studies on marmots in an evolutionary context. To address this situation, we obtained complete cytochrome (cyt) b sequences for 13 of the species and a partial sequence for the 14th. We applied a statistical approach to both phylogeny estimation and hypothesis testing, using parsimony and maximum likelihood-based methods. We conducted statistical tests on a suite of previously proposed hypotheses of phylogenetic relationships and biogeographic histories. The cyt b data strongly support the monophyly of Marmota and a western montane clade in the Nearctic. Although some other scenarios cannot be rejected, the results are consistent with an initial diversification in North America, followed by an invasion and subsequent rapid diversification in the Palearctic. These analyses reject the two major competing hypotheses of M. broweri's phylogenetic relationships--namely, that it is the sister species to M. camtschatica of eastern Siberia, and that it is related closely to M. caligata of the Nearctic. The Alaskan distribution of M. broweri is best explained as a reinvasion from the Palearctic, but a Nearctic origin can not be rejected. Several other conventionally recognized species groups can also be rejected. Social evolution has been homoplastic, with large colonial systems evolving in two groups convergently. The cyt b data do not provide unambiguous resolution of several basal nodes in the Palearctic radiation, leaving some aspects of pelage and karyotypic evolution equivocal.  相似文献   

9.
Research into the geographical pattern of tooth size in the red fox,Vulpes vulpes (Linnaeus, 1758) in the Holarctic was conducted on a sample of 3806 skulls belonging to 41 fox populations. The Nearctic was represented by 948 specimens (249 females, 359 males, 340 specimens of unknown sex) belonging to 13 populations, whereas the Palearctic was represented by 2858 red foxes (1034 females, 1256 males, 568 specimens of unknown sex) from 32 populations. In the Nearctic, the largest foxes live on Kodiak Island (V. v. harrimani) and the Kenai Peninsula (V. v. kenaiensis), while the smallest ones live in California (V. v. necator) and Georgia (V. v. fulvus). In the Palearctic, the largest foxes come from the Far East (V. v. jakutensis, V. v. beringiana, V. v. tobolica), while the smallest are from the southern borders of the Eurasian range (V. v. pusilla, V. v. barbara, V. v. arabica). In both the Palearctic and Nearctic, tooth size in the fox varies depending on the geo-climatic factors. The fox’s tooth size confirms the general basis of Bergmann’s rule. In the Palearctic, specimens with larger teeth occur in cooler habitats with greater seasonality. These are first and foremost Northern and Far Eastern populations. In the Nearctic, tooth size in red foxes depends on the temperature and humidity of their habitat. Competition within the species and between species has important impact on the variation and dimorphism of tooth size in the red fox. Both in the Nearctic and Palearctic, red foxes from regions of sympatric co-occurrence with other closely relatedVulpes species, are more sexually dimorphic in terms of tooth size than red foxes from allopatric regions. Analysis of morphological distance on the basis of the size of dental characteristics shows, that in the Palearctic, the foxes from India (V. v. pusilla), while in the Nearctic, the population from Kodiak Island (V. v. harrimani) are most distant from the remaining populations. Geographic barriers such as the Bering Strait, Parry Channel, Mackenzie River, Kolyma and Omolon River systems have had a critical impact on red fox evolution. The most likely place for the evolution and diversification of the phyletic lineVulpes vulpes seems to be the Middle East region.  相似文献   

10.
Species of Urogonimus Monticelli, 1888 (Leucochloridiidae Poche, 1907) are difficult to distinguish using adult morphology, and their taxonomy has been repeatedly subjected to revision. Some Nearctic species have been regarded as synonymous with the Palearctic type species Urogonimus macrostomus (Rudolphi, 1803) Monticelli, 1888. This implies that U. macrostomus is present in the Nearctic, but there is no additional evidence for this putative distribution. We collected trematodes morphologically indistinguishable from U. macrostomus from a house sparrow (Passer domesticus) in Edmonton, Alberta, Canada. Sequences 2958 bp in total length from the small and large subunits of ribosomal DNA from 2 specimens were 99.8-100% identical to those of U. macrostomus in the Ukraine and Japan. In light of the lack of morphological differences and small degree of genetic variation, we consider the specimens we collected to be conspecific with U. macrostomus in the Palearctic, and the Holarctic range of the species is thus supported. Sequences from a more rapidly evolving gene, cytochrome c oxidase 1, were obtained to aid future study of this and related species.  相似文献   

11.
Research on the morphological variability of the occlusal surface of M1 talonid in the red foxVulpes vulpes (Linnaeus, 1758) in the Holarctic has been carried out on 2271 specimens originating from 42 populations. The Nearctic was represented by 666 specimens belonging to 13 populations, whereas Palearctic was represented by 1605 specimens from 29 populations. Analyses of the developmental level and formation of cristids between the hypoconid and entoconid allowed the differentiation of 34 shape variants of the occlusal surface of the talonid in the red fox. Because of the complicated variation of cristids, 34 variants were assigned to 5 morphotypes of group P. In the Palearctic and Nearctic a significant geographic variation occurred of P morphotypes and their variants. Primitive variants of the talonid structure on M1 are predominant in populations from the south of the Asian range of the red fox, while more progressive characters of the occlusal surface of the lower carnassial are typical of the northern and centrally located red fox populations in the Palearctic and Nearctic. The geographic differentiation is probably connected with different Pleistocene histories of particular populations.  相似文献   

12.
Widely known for pest species that include major modulators of temperate forests, the genus Choristoneura is part of the species‐rich tribe Archipini of leafroller moths (Tortricidae). Delimitation of the genus has remained unresolved because no phylogeny has included species endemic to Africa and studies have often omitted the type species of the genus. Further taxonomic confusion has been generated by the transfer of Archips occidentalis (Walsingham) to Choristoneura, creating a homonym with Choristoneura occidentalis Freeman, an important defoliator of North American forests. To define the limits of the genus, we reconstructed a phylogeny using DNA sequences for mitochondrial cytochrome oxidase subunit I and nuclear ribosomal 28S genes. Our ingroup included 23 Choristoneura species‐level taxa, complemented by a large sample of outgroups comprising 82 species of Archipini and other Tortricidae. We generated a time‐calibrated tree using fossil and secondary calibrations and we inferred biogeographic and diversification processes in Choristoneura. Our analysis recovered the genus as polyphyletic, with Archips occidentalis, Choristoneura simonyi and Choristoneura evanidana excluded from the main clade. Based on the recovered phylogenies and a redefinition, we restrict Choristoneura primarily to species with a northern hemisphere distribution. Our analysis supports A. occidentalis as the sister group of Cacoecimorpha pronubana, C. simonyi as the sister of ‘Xenotemnapallorana, and C. evanidana as the sister of Archips purpurana. A new combination is proposed: Archips evanidana comb.n. ; the availability of ‘Xenotemna’ as a valid name is discussed and A. occidentalis is considered as an orphaned name within the Archipini. We found support for a Holarctic origin of Choristoneura about 23 Ma, followed by early divergence in the Palearctic region. The main divergence occurred at 16 Ma, with one clade in the Nearctic and another in the Palearctic. Subsequent cladogenetic events were synchronous and related to herbivorous specialization, with each clade divided into coniferophagous and polyphagous lineages. Their specialization as conifer feeders temporally matched the expansion of boreal forest during the Miocene.  相似文献   

13.
Chironomidae (Diptera) are widespread, abundant, diverse and ubiquitous, and include genera and species that are distributed across the Holarctic region. However, the geographical barriers between continents should have resulted in intraspecific population differentiation with reflection on individual biological and ecological traits. Our aim was to test for potential differences in Chironomidae species/genus and traits between the Nearctic and Palearctic regions. We compared the Chironomidae trait information gathered in two databases; one database was developed in Europe and the other in North America. Common genera and species of both databases were selected, and the common traits were adjusted into the same trait categories. Data were transformed into presence/absence and divided into Eltonian (biological/functional) and Grinnellian (ecological) traits. Common genera and common species were analyzed using Fuzzy correspondence analysis (FCA). Differences between databases occur for all trait domains. Yet, Eltonian traits showed lower level of concordance than Grinnellian traits at the species level. Different biological characteristics in the Nearctic and Palearctic regions may indicate that Chironomidae have different adaptions to similar ecological environments due to intraspecific variability or even trait plasticity.  相似文献   

14.
Aim In this paper, I discuss the temporal and spatial aspects of historical biogeography and speciation in a widely distributed Holarctic subfamily of birds (Tetraoninae). Location Northern Holarctic. Results Using dated fossils, I calibrated the molecular clock for the mitochondrial control region at 7.23 ± 1.58% nucleotide divergence (maximum likelihood corrected) per million years. The data suggest that grouse (Tetraoninae) originated in the Middle Pliocene, 6.3 Ma. Grouse apparently originated in the northern part of western Nearctic, and Palearctic was colonized independently three times, first by the ancestor of all grouse in the Middle Pliocene, then by the ancestor of forest (Falcipennis, Tetrao and Lyrurus) and prairie (Centrocercus, Dendragapus and Tympanuchus) grouse in the Late Pliocene, and finally by the ancestral Lagopus in the Early Pleistocene. Only once Nearctic was colonized from Palearctic by a common ancestor of forest grouse. Sympatry and range symmetry were positively correlated with molecular divergence. These correlations suggest that peripatric isolation was the predominant mode of speciation throughout grouse history. Main conclusions Speciation events in grouse were driven by climatic oscillations of the Pliocene and Pleistocene. Isolation of small peripheral populations from widely distributed ancestors was the dominant mode of speciation in grouse. Isolations during interglacials both across Beringia, and in southern mountain areas when boreal habitats were restricted to high elevations, suggest an important role for vicariance in grouse speciation.  相似文献   

15.
The relationship between fecundity and adult body weight in Homeotherms   总被引:3,自引:0,他引:3  
Summary Bythotrephes cederstroemii Schoedler, a predatory freshwater zooplankter (Crustacea: Cladocera), was first found in the Laurentian Great Lakes in December 1984. The first individuals were from Lake Huron, followed in 1985 with records from Lakes Erie and Ontario. By late August, 1986 the species had spread to southern Lake Michigan (43°N). Bythotrephes has not previously been reported from North America, but has been restricted to a northern and central Palearctic distribution. Its dramatic and widespread rise in abundance in Lake Michigan was greatest in offshore regions. Bythotrephes appears to be invading aggressively, but avoiding habitats presently occupied by glacio-marine relict species that became established in deep oligotrophic North American lakes after the Wisconsin glaciation. Because it is a voracious predator its invasion may lead to alterations in the native zooplankton fauna of the Great Lakes. It offers the chance to study how invading plankton species join an existing community. Judging from its persistence and success in deep European lakes, Bythotrephes may now become a permanent member of zooplankton communities in the Nearctic.  相似文献   

16.
The Northern Goshawk Accipiter gentilis is a medium‐sized bird of prey inhabiting boreal and temperate forests. It has a Holarctic distribution with 10 recognized subspecies. Traditionally, it has been placed within the Accipiter [gentilis] superspecies, together with Henst's Goshawk A. henstii, the Black Sparrowhawk A. melanoleucus, and Meyer's Goshawk A. meyerianus. While those four taxa are geographically separated from each other, hence referred to as allospecies, their phylogenetic relationships are still unresolved. In the present study, we performed phylogenetic analyses on the Accipiter [gentilis] superspecies, including all recognized subspecies of all four allospecies, using partial sequences of two marker loci of the mitochondrial genome, the control region and the cytochrome b gene. We found a deep split within A. gentilis into two monophyletic groups, a Nearctic clade (three subspecies) and a Palearctic clade (seven subspecies). The Palearctic clade is closely related to A. meyerianus, and together these two were more closely related to the other Old World taxa A. henstii and A. melanoleucus, which in turn were reciprocally monophyletic sister species. As a consequence, A. gentilis as usually conceived (including all Holarctic subspecies) was non‐monophyletic. We found a strong genetic homogeneity within Palearctic A. gentilis despite the fact that it comprises seven subspecies distributed from the Atlantic coast in Western Europe to Eastern Siberia. Relationships between the four clades could not be resolved unambiguously. Our results, if confirmed by more integrative data, would imply a taxonomic revision of Nearctic A. gentilis into a separate allospecies, Accipiter [gentilis] atricapillus.  相似文献   

17.
Capsule Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range.

Aims To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation.

Methods Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically.

Results Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction.

Conclusions Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories.  相似文献   

18.

Background

The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries.

Methodology and Principal Findings

Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity.

Conclusions and Significance

DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.  相似文献   

19.
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck''s lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.  相似文献   

20.
Polymorphism and differentiation of the chromosome banding sequence pools and genomic DNA were studied in three natural populations of Chironomus entis from Europe and North America. These populations showed a moderate level of chromosomal polymorphism and high RAPD polymorphism of genomic DNA. The Palearctic and Nearctic populations of this species did not differ significantly in the levels of chromosome and genomic DNA polymorphism. Estimation of the cytogenetic (GDcg) and genetic (GDDNA) distances between these C. entis populations showed that their chromosome banding sequence pools and cytogenetic structures are differentiated to a greater extent than genomic DNA. The values of cytogenetic and genetic distances between the Palearctic and Nearctic populations of C. entis are higher than the values of the corresponding distances between the Nearctic populations, but they do not reach the level of divergence between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号