共查询到20条相似文献,搜索用时 0 毫秒
1.
Matos M Simões P Duarte A Rego C Avelar T Rose MR 《Evolution; international journal of organic evolution》2004,58(7):1503-1510
Abstract Laboratory adaptation allows researchers to contrast temporal studies of experimental evolution with comparative studies. The comparative method is here taken to mean the inference of microevolutionary processes from comparisons among contemporaneous populations of diverse origins, from one or multiple species. The data contrasted here come from Drosophila subobscura populations that were introduced to the laboratory at several different times and from two different locations. Two questions were addressed. First, can we correctly infer evolutionary dynamics from comparative data collected simultaneously from disparate populations? In most cases, we could, except for the character of starvation resistance. Second, are the evolutionary dynamics inferred from the comparative approach similar to those revealed by temporal studies of experimental evolution? For fecundity characters, they were. Overall the results show that both comparative and temporal studies are useful, though the former can be uninformative for characters with complex evolutionary trajectories. 相似文献
2.
Daniel J. Hornbach Daniel C. Allen Mark C. Hove Kelly R. MacGregor 《Freshwater Biology》2018,63(3):243-263
- Freshwater systems are increasingly threatened by human impacts. To effectively monitor and manage these systems, reference or baseline conditions need to be documented to establish restoration or management goals.
- Freshwater mussel (Unionoida) communities are in decline in many river systems worldwide. Yet there are few long‐term quantitative studies in relatively “pristine” habitats that could serve as “reference” locations. Here, we present the results of a 20‐year quantitative monitoring study of mussel assemblages in a federally protected river in the United States.
- We found significant declines in mussel abundance (41%) and species richness (16%) over the 20‐year period, while mussel species evenness and Shannon's diversity index values increased over time (19.3% and 12.1%, respectively). This, combined with an analysis of community composition change trajectories, suggests the declines were disproportionately higher for common species than for rare species.
- Variation in life‐history traits of macroinvertebrates is often used to assess the degree of degradation of aquatic systems. Using Haag's (2012) classification of mussel life‐history traits, we found the proportion of opportunistic species (fast growth, high reproductive output, short lifespan) decreased by 65.3%, while the proportion of equilibrium species (slow growth, long lifespan, lower investment in reproduction) increased by 54.6% and the proportion of periodic species (moderate‐to‐high growth rates, low‐to‐intermediate fecundity, lifespan and age at maturity) increased by 82.4%.
- There were modest changes in human population and land use in the catchment during our study period, and a change in the operation of a hydroelectric dam reduced discharge variability. Sediment size changed at several study sites, increasing at some sites while decreasing at others.
- This study occurred in one of the best‐protected and most pristine rivers in the upper Midwest of the United States, harbouring one of the region's most intact mussel fauna that could be used as a “reference” to set goals for the restoration of mussel fauna in other river systems. Despite the high quality and protection of this river system, we found slow declines in the mussel community but found no evidence that changes in land use, flow regime, water quality, the spread of invasive species or increased sedimentation were responsible for these declines. The slow decline of mussels and lack of specific causes in such a river underscore the imperilment of this fauna, and the need for more aggressive conservation, management and research approaches.
3.
Guy A. Balme Andrew Batchelor Natasha de Woronin Britz Greg Seymour Michael Grover Lex Hes David W. Macdonald Luke T.B. Hunter 《Mammal Review》2013,43(3):221-237
- Long‐term studies on large felids are rare and yet they yield data essential to understanding the behaviour of species and the factors that facilitate their conservation.
- We used the most extensive data set so far compiled on leopards Panthera pardus to establish baseline reproductive parameters for females and to determine the demographic and environmental factors that affect their lifetime reproductive success.
- We used comprehensive sightings reports and photographs from ecotourism lodges in the Sabi Sand Game Reserve, South Africa, to reconstruct life histories for 44 female leopards that gave birth to 172 litters over a 32‐year period.
- Leopards appeared to exhibit a birth pulse; most litters were born in the wet season, particularly in December. Mean age at first parturition (n = 26, mean ± standard error = 46 ± 2 months, range = 33–62) was older than previously recorded, possibly due to elevated intraspecific competition. Average litter size was 1.9 ± 0.1 (n = 140, range = 1–3) and declined with maternal age. Age of litters at independence (n = 52, 19 ± 1 months, range = 9–31) was inversely related to prey abundance but did not affect the likelihood of recruitment of offspring. Interbirth intervals differed following successful litters (in which at least one cub survived to independence; n = 55, 25 ± 1 months, range = 14–39) and unsuccessful litters (n = 46, 11 ± 1 months, range = 4–36), as did the time taken to replace litters.
- Variation in lifetime reproductive success was influenced mainly by differences in cub survival, which was related to maternal age and vulnerability to infanticide. Cub survival (37%) declined as females got older, perhaps because mothers relinquished portions of their home ranges to philopatric daughters. Male leopards were responsible for many (40%) cub deaths and females appeared to adopt severalstrategies to counter the risk of infanticide, including paternity confusion and displaying a period of reduced fertility immediately after a resident male was replaced.
- Our results suggest that the reproductive success of female leopards is regulated primarily by top‐down processes. This should be taken into account in management decisions, particularly when managers are considering the implementation of invasive activities such as legal trophy hunting.
4.
Furness AI Walsh MR Reznick DN 《Evolution; international journal of organic evolution》2012,66(4):1240-1254
Convergent evolution is characterized by the independent evolution of similar phenotypes within similar selective environments. Previous work on Trinidadian killifish, Rivulus hartii, demonstrated repeatable life-history differences across communities that differ in predation intensity. These studies were performed in rivers located on the south slope of Trinidad's Northern Range Mountains. There exists a parallel series of rivers on the north slope of these mountains. As on the south slope, Rivulus is found across a gradient of fish predation. However, the predatory fish species in north-slope rivers are derived from marine families, whereas south-slope rivers contain a predatory fish fauna characteristic of the South American mainland. If predator-induced mortality and the associated indirect effects are the causal factors selecting for life-history patterns in Rivulus, and these are similar in north- and south-slope rivers, then the specific predatory species should be interchangeable and we would expect convergence of life-history phenotypes across slopes. Here, we characterize the life-history phenotypes of Rivulus from north-slope communities by measuring number of eggs, egg weight, reproductive allotment, reproductive tissue weight, and size at maturity. We find similar patterns of life-history divergence across analogous predator communities. Between slopes, minor differences in Rivulus life-history traits exist and one potential cause of these differences is the abundance of Macrobrachium prawns in north-slope rivers. 相似文献
5.
1. Fish assemblages and habitats were sampled annually at fixed sites in three tributaries of the Gila River catchment over a 21‐year span that included prolonged low‐ and high‐flow periods. Model selection was used to evaluate responses of seven native fishes with variable ecological traits (four small‐bodied cyprinids, one large‐bodied cyprinid, and two large‐bodied catostomids) to mean annual discharge and predacious non‐native fishes across the three sites. We also compared habitat use and overlap of native and non‐native fishes to identify potential for negative interactions among species. 2. Assemblage structure (species abundance and richness) and recruitment of native species was strongly and primarily affected by mean annual discharge and secondarily by location and densities of non‐native predators (mainly the centrarchid Micropterus dolomieui). 3. Densities of age‐0 catostomids and small‐bodied cyprinids were positively associated with discharge, and this pattern was strongest in the tributary with the lowest densities of non‐native predators. Absence or extreme low abundance of natives during low‐flow years was most pronounced at the sites where non‐native predators were comparatively common. Densities of adults of large‐bodied native species also varied by site, but often were positively associated with densities of non‐native predators. 4. Spatially variable responses of native fish assemblages indicated that the persistence of native fishes could be jeopardized if key habitats were lost or flow regimes unnaturally altered, particularly during low‐flow conditions when recruitment of native fishes is low and predation by non‐natives is high. Large‐bodied species may be less vulnerable to multiple years of poor conditions because adults are able to avoid predation by non‐natives and thus can rely on occasional high discharge years for successful recruitment. 5. As in other arid‐land streams, native fish assemblages of the Gila River Basin continue to decline. Our results indicate that conservation requires specific knowledge and consideration of physical influences as well as life‐history attributes of native and non‐native fishes. 相似文献
6.
Simões P Santos J Fragata I Mueller LD Rose MR Matos M 《Evolution; international journal of organic evolution》2008,62(8):1817-1829
The importance of contingency versus predictability in evolution has been a long-standing issue, particularly the interaction between genetic background, founder effects, and selection. Here we address experimentally the effects of genetic background and founder events on the repeatability of laboratory adaptation in Drosophila subobscura populations for several functional traits. We found disparate starting points for adaptation among laboratory populations derived from independently sampled wild populations for all traits. With respect to the subsequent evolutionary rate during laboratory adaptation, starvation resistance varied considerably among foundations such that the outcome of laboratory evolution is rather unpredictable for this particular trait, even in direction. In contrast, the laboratory evolution of traits closely related to fitness was less contingent on the circumstances of foundation. These findings suggest that the initial laboratory evolution of weakly selected characters may be unpredictable, even when the key adaptations under evolutionary domestication are predictable with respect to their trajectories. 相似文献
7.
William J. Etges Cassia Cardoso De Oliveira Mohamed A. F. Noor Michael G. Ritchie 《Evolution; international journal of organic evolution》2010,64(12):3549-3569
We carried out a three‐tiered genetic analysis of egg‐to‐adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life‐history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F1, F2, and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F2 males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population‐level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL‐based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon‐based mate preferences. 相似文献
8.
Adaptation in a spider mite population after long-term evolution on a single host plant 总被引:1,自引:0,他引:1
Magalhães S Fayard J Janssen A Carbonell D Olivieri I 《Journal of evolutionary biology》2007,20(5):2016-2027
Evolution in a single environment is expected to erode genetic variability, thereby precluding adaptation to novel environments. To test this, a large population of spider mites kept on cucumber for approximately 300 generations was used to establish populations on novel host plants (tomato or pepper), and changes in traits associated to adaptation were measured after 15 generations. Using a half-sib design, we investigated whether trait changes were related to genetic variation in the base population. Juvenile survival and fecundity exhibited genetic variation and increased in experimental populations on novel hosts. Conversely, no variation was detected for host choice and developmental time and these traits did not evolve. Longevity remained unchanged on novel hosts despite the presence of genetic variation, suggesting weak selection for this trait. Hence, patterns of evolutionary changes generally matched those of genetic variation, and changes in some traits were not hindered by long-term evolution in a constant environment. 相似文献
9.
Hope Klug Michael B. Bonsall 《Evolution; international journal of organic evolution》2010,64(3):823-835
Patterns of parental care are strikingly diverse in nature, and parental care is thought to have evolved repeatedly multiple times. Surprisingly, relatively little is known about the most general conditions that lead to the origin of parental care. Here, we use a theoretical approach to explore the basic life‐history conditions (i.e., stage‐specific mortality and maturation rates, reproductive rates) that are most likely to favor the evolution of some form of parental care from a state of no care. We focus on parental care of eggs and eggs and juveniles and consider varying magnitudes of the benefits of care. Our results suggest that parental care can evolve under a range of life‐history conditions, but in general will be most strongly favored when egg death rate in the absence of care is high, juvenile survival in the absence of care is low (for the scenario in which care extends into the juvenile stage), adult death rate is relatively high, egg maturation rate is low, and the duration of the juvenile stage is relatively short. Additionally, parental care has the potential to be favored at a broad range of adult reproductive rates. The relative importance of these life‐history conditions in favoring or limiting the evolution of care depends on the magnitude of the benefits of care, the relationship between initial egg allocation and subsequent offspring survival, and whether care extends into the juvenile stage. The results of our model provide a general set of predictions regarding when we would expect parental care to evolve from a state of no care, and in conjunction with other work on the topic, will enhance our understanding of the evolutionary dynamics of parental care and facilitate comparative analyses. 相似文献
10.
The evolution of immune function depends not only on variation in genes contributing directly to the immune response, but also on genetic variation in other traits indirectly affecting immunocompetence. In particular, sexual selection is predicted to trade-off with immunocompetence because the extra investment of resources needed to increase sexual competitiveness reduces investment in immune function. Additional possible immunological consequences of intensifying sexual selection include an exaggeration of immunological sexual dimorphism, and the reduction of condition-dependent immunological costs due to selection of 'good genes' (the immunocompetence handicap hypothesis, ICHH). We tested for these evolutionary possibilities by increasing sexual selection in laboratory populations of Drosophila melanogaster for 58 generations by reestablishing a male-biased sex ratio at the start of each generation. Sexually selected flies were larger, took longer to develop, and the males were more sexually competitive than males from control (equal sex ratio) lines. We found support for the trade-off hypothesis: sexually selected males were found to have reduced immune function compared to control males. However, we found no evidence that sexual selection promoted immunological sexual dimorphism because females showed a similar reduction in immune function. We found no evidence of evolutionary changes in the condition-dependent expression of immunocompetence contrary to the expectations of the ICHH. Lastly, we compared males from the unselected base population that were either successful (IS) or unsuccessful (IU) in a competitive mating experiment. IS males showed reduced immune function relative to IU males, suggesting that patterns of phenotypic correlation largely mirror patterns of genetic correlation revealed by the selection experiment. Our results suggest increased disease susceptibility could be an important cost limiting increases in sexual competitiveness in populations experiencing intense sexual selection. Such costs may be particularly important given the high intersex correlation, because this represents an apparent genetic conflict, preventing males from reaching their sexually selected optimum. 相似文献
11.
Chasnov JR 《Evolution; international journal of organic evolution》2011,65(7):2117-2122
A recent study suggests that postdauer Caenorhabditis elegans hermaphrodites produce more self‐sperm and have larger brood sizes than worms that bypass diapause. Why might natural selection favor increased self‐sperm production in postdauer hermaphrodites? This question is addressed by developing an age‐structured model for an exponentially growing worm population descending from a founder postdauer hermaphrodite. It is assumed that natural selection favors those founders that have the largest number of living descendants at some fixed future time. Increased self‐sperm production in postdauer hermaphrodites can then evolve when the diapause‐bypassing descendants suffer a higher mortality rate than their parental postdauer founders. 相似文献
12.
In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. 相似文献
13.
Christina M. May Joost van den Heuvel Agnieszka Doroszuk Katja M. Hoedjes Thomas Flatt Bas J. Zwaan 《Journal of evolutionary biology》2019,32(5):425-437
Experimental evolution (EE) is a powerful tool for addressing how environmental factors influence life‐history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here, we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets; however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age‐at‐reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade‐offs should be considered not only among traits within an organism, but also among adaptive responses to different—sometimes conflicting—selection pressures, including across life stages. 相似文献
14.
Justin R. Meyer Anurag A. Agrawal Ryan T. Quick Devin T. Dobias Dominique Schneider Richard E. Lenski 《Evolution; international journal of organic evolution》2010,64(10):3024-3034
The dynamics of host susceptibility to parasites are often influenced by trade‐offs between the costs and benefits of resistance. We assayed changes in the resistance to three viruses in six lines of Escherichia coli that had been evolving for almost 45,000 generations in their absence. The common ancestor of these lines was completely resistant to T6, partially resistant to T6* (a mutant of T6 with altered host range), and sensitive to λ. None of the populations changed with respect to resistance to T6, whereas all six evolved increased susceptibility to T6*, probably ameliorating a cost of resistance. More surprisingly, however, the majority of lines evolved complete resistance to λ, despite not encountering that virus during this period. By coupling our results with previous work, we infer that resistance to λ evolved as a pleiotropic effect of a beneficial mutation that downregulated an unused metabolic pathway. The strong parallelism between the lines implies that selection had almost deterministic effects on the evolution of these patterns of host resistance. The opposite outcomes for resistance to T6* and λ demonstrate that the evolution of host resistance under relaxed selection cannot be fully predicted by simple trade‐off models. 相似文献
15.
Algae hold promise as a source of biofuel. Yet, the manner in which algae are most efficiently propagated and harvested is different from that used in traditional agriculture. In theory, algae can be grown in continuous culture and harvested frequently to maintain high yields with a short turnaround time. However, the maintenance of the population in a state of continuous growth will likely impose selection for fast growth, possibly opposing the maintenance of lipid stores desirable for fuel. Any harvesting that removes a subset of the population and leaves the survivors to establish the next generation may quickly select traits that escape harvesting. An understanding of these problems should help identify methods for retarding the evolution and enhancing biofuel production. 相似文献
16.
Stephanie S. Porter Kevin J. Rice 《Evolution; international journal of organic evolution》2013,67(2):599-608
Specialization and concomitant trade‐offs are assumed to underlie the non‐neutral coexistence of lineages. Trade‐offs across heterogeneous environments can promote diversity by preventing competitive exclusion. However, the importance of trade‐offs in maintaining diversity in natural microbial assemblages is unclear, as trade‐offs are frequently not detected in artificial evolution experiments. Stressful conditions associated with patches of heavy‐metal enriched serpentine soils provide excellent opportunities for examining how heterogeneity may foster genetic diversity. Using a spatially replicated design, we demonstrate that rhizobium bacteria symbiotic with legumes inhabiting contrasting serpentine and nonserpentine soils exhibit a trade‐off between a genotype's nickel tolerance and its ability to replicate rapidly. Furthermore, we detected adaptive divergence in rhizobial assemblages across soil type heterogeneity at multiple sites, suggesting that this trade‐off may promote the coexistence of phenotypically distinct bacterial lineages. Trade‐offs and adaptive divergence may be important factors maintaining the tremendous diversity within natural assemblages of bacteria. 相似文献
17.
Jean‐Nicolas Jasmin Clifford Zeyl 《Evolution; international journal of organic evolution》2012,66(12):3789-3802
We studied the evolution of the correlation between growth rate r and yield K in experimental lineages of the yeast Saccharomyces cerevisiae. First, we isolated a single clone every approximately 250 generations from each of eight populations selected in a glucose‐limited medium for 5000 generations at approximately 6.6 population doublings per day (20 clones per line × 8 lines) and measured its growth rate and yield in a new, galactose‐limited medium (with ~1.3 doubling per day). For most lines, r on galactose increased throughout the 5000 generations of selection on glucose whereas K on galactose declined. Next, we selected these 160 glucose‐adapted clones in the galactose environment for approximately 120 generations and measured changes in r and K in galactose. In general, growth rate increased and yield declined, and clones that initially grew slowly on galactose improved more than did faster clones. We found a negative correlation between r and K among clones both within each line and across all clones. We provide evidence that this relationship is not heritable and is a negative environmental correlation rather than a genetic trade‐off. 相似文献
18.
Parvin Shahrestani Julian B. Wilson Laurence D. Mueller Michael R. Rose 《Evolution; international journal of organic evolution》2016,70(11):2550-2561
In outbred sexually reproducing populations, age‐specific mortality rates reach a plateau in late life following the exponential increase in mortality rates that marks aging. Little is known about what happens to physiology when cohorts transition from aging to late life. We measured age‐specific values for starvation resistance, desiccation resistance, time‐in‐motion, and geotaxis in ten Drosophila melanogaster populations: five populations selected for rapid development and five control populations. Adulthood was divided into two stages, the aging phase and the late‐life phase according to demographic data. Consistent with previous studies, we found that populations selected for rapid development entered the late‐life phase at an earlier age than the controls. Age‐specific rates of change for all physiological phenotypes showed differences between the aging phase and the late‐life phase. This result suggests that late life is physiologically distinct from aging. The ages of transitions in physiological characteristics from aging to late life statistically match the age at which the demographic transition from aging to late life occurs, in all cases but one. These experimental results support evolutionary theories of late life that depend on patterns of decline and stabilization in the forces of natural selection. 相似文献
19.
Ronald D. Bassar Troy Simon William Roberts Joseph Travis David N. Reznick 《Evolution; international journal of organic evolution》2017,71(2):373-385
Species coexistence may result by chance when co‐occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size‐based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco‐evolutionary feedbacks. 相似文献
20.
M. Pascual F. Mestres L. Serra 《Journal of Zoological Systematics and Evolutionary Research》2004,42(1):33-37
The sex‐ratio (SR), defined as the proportion of males, has been studied in three North American colonizing populations of Drosophila subobscura (Eureka, Davis and Gilroy). The proportion of sexes under laboratory conditions was studied using the one‐generation serial transfer technique in one‐ and two‐species populations, to infer whether biased SR affects the outcome when competing with Drosophila pseudoobscura, another member of the same group now in sympatry with D. subobscura in North America. The wild samples of D. subobscura yielded a significantly higher number of males than females during those months where the species is more abundant. However, there was no significant deviation in the 1 : 1 proportion of sexes in the descendants of D. subobscura at any of the experimental conditions. On the contrary, D. pseudoobscura produced a higher proportion of females which could be responsible for the exclusion of D. subobscura in laboratory competition experiments with overlapping generations. Thus, if sexes are equal at birth and survival is similar, the preponderance of males of D. subobscura in our wild collections could indicate greater activity and probably greater chance of dispersal of males versus females especially under favourable conditions. 相似文献