首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prey that lives with functionally different predators may experience enhanced mortality risk, because of conflicts between the specific defenses against their predators. Because natural communities usually contain combinations of prey and functionally different predators, examining risk enhancement with multiple predators may help to understand prey population dynamics. It is also important in an applied context: risk enhancement with multiple biological control agents could lead to successful suppression of pests. We examined whether risk enhancement occurs in the spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when exposed to two predator species: a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), and a specialist predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). We replicated microcosms that consisted of spider mites, ants, and predatory mites. Spider mites avoided generalist ants by staying inside their webs on leaf surfaces. In contrast, spider mites avoided specialist predatory mites that intruded into their webs by exiting the web, which obviously conflicts with the defense against ants. In the presence of both predators, enhanced mortality of spider mites was observed. A conflict occurred between the spider mites’ defenses: they seemed to move out of their webs and be preyed upon by ants. This is the first study to suggest that risk enhancement occurs in web‐spinning spider mites that are exposed to both generalist and specialist predator species, and to provide evidence that ants can have remarkable synergistic effects on the biological control of spider mites using specialist predatory mites.  相似文献   

2.
Many orb-web weaving spiders add conspicuous silken structures, called stabilimenta, to the hub of their webs, which are hypothesized to attract more prey. However, they may also attract predators. Orb spiders should therefore alter their web-building behaviour to minimize predation risk. We tested this hypothesis by experimentally examining web-building responses of the St Andrew cross spider, Argiope versicolor, to predation risk from one of its natural predators, the jumping spider Portia labiata. We randomly assigned A. versicolor juveniles to one of three treatments: (1) blank control (clean blotting paper: no odour from the predator or nonpredator); (2) predator odour cues from P. labiata; and (3) nonpredator control (odour cues from Leucauge decorata). Each individual of A. versicolor was monitored until it had built five consecutive webs (two webs before and three webs after the introduction of predator cues). When exposed to predator cues, the juveniles not only decreased the frequency of stabilimentum building but also refrained from increasing stabilimentum area, capture area and capture silk thread with subsequent webs compared with the blank control and the nonpredator control. Web-building traits, however, were not significantly different between the blank control and the nonpredator control. One plausible explanation is that A. versicolor juveniles can detect and discriminate between predators and nonpredators through olfactory cues and alter stabilimentum building and other web traits in response to the risk of predation. This is the first demonstration of an adaptive, plastic web-building behavioural response induced by chemical cues from a predator.  相似文献   

3.
Differences in structural complexity of habitats have been suggested to modify the extent of top–down forces in terrestrial food webs. In order to test this hypothesis, we manipulated densities of generalist invertebrate predators and the complexity of habitat structure in a two-factorial design. We conducted two field experiments in order to study predation effects of ants and spiders and, in particular, of the wasp spider Argiope bruennichi on herbivorous arthropods such as grasshoppers, plant- and leafhoppers in a grassland. Predator densities were manipulated by removal in habitats of higher and lower structural diversity, and the effects on herbivore densities were assessed by suction sampling. Habitat structure was changed by cutting the vegetation to half its height and removing leaf litter.We found a significant negative effect of this assemblage of generalist predators on plant- and leafhoppers, which were 1.6 times more abundant in predator removal plots. This effect was stronger in low-structured (cut) than in uncut vegetation. Densities of the most abundant planthopper Ribautodelphax pungens (Delphacidae) were 2.2 times higher in predator removal plots. Furthermore, adult plant- and leafhoppers responded more strongly than juveniles and epigeic species more strongly than hypergeic species. The presence of predators had a positive effect on plant- and leafhopper species diversity. In a second field experiment, we tested the exclusive impact of Argiope bruennichi on its prey, and found that its effect was also significant, although weaker than the effect of the predator assemblage. This effect was stronger in grass-dominated vegetation compared to structurally more complex mixed vegetation of grasses and herbs. We conclude that habitat structure and in particular vegetation height and architectural complexity strongly modify the strength of top–down forces and indirectly affect the diversity of herbivorous arthropods.  相似文献   

4.
Danner BJ  Joern A 《Oecologia》2003,137(3):352-359
In response to increased exposure to predators when searching for food, many prey increase the frequency of antipredator behaviors, potentially reducing foraging rate and food intake. Such direct, nonlethal interactions between predators and prey resulting in reduced food intake can indirectly influence lifecycle development through effects on growth, developmental rate, and survival. We investigated the general hypothesis that individual performance of a herbivorous insect can be negatively affected when exposed to nonlethal predation risk, and that the response can be mediated by food quality. This hypothesis was tested using the common rangeland grasshopper Ageneotettix deorum with and without exposure to common wolf spider predators (Lycosidae, Schizocosa spp.) on both untreated natural and fertilized vegetation. All spiders were rendered temporarily incapable of direct feeding by restricting function of the chelicerae with beeswax. Detectable responses by grasshoppers to spiders indicate indirect consequences for lifecycle development. Grasshopper performance was measured as hind femur growth, duration of nymphal lifecycle stages, and survivorship in a caged field experiment conducted over 2 years. Grasshoppers developed faster and grew 3–5% larger when allowed to forage on fertilized vegetation in the absence of risk from a spider predator. Failure-time analysis illustrated enhanced survival probability in response to elevated food quality and the negative effects of grasshopper susceptibility to nonlethal predation risk. Performance on food of relatively low, ambient quality with no predation risk equaled that of grasshoppers caged with high quality vegetation in the presence of a modified spider. Increased resource quality can clearly moderate the negative life history responses caused by the behavioral modification of grasshoppers when exposed to spider predation risk, a compensatory response.  相似文献   

5.
Diverse benthic communities in streams include a wide variety of predators with different habitat preferences, e.g. for pools or riffles. We hypothesised that these preferences result in mesohabitat-specific predator community structures with quantitative differences concerning predation intensity by vertebrate and invertebrate predators, importance of intraguild predation, or top–down pressure. This hypothesis was evaluated for a small submontane stream by means of mesohabitat-specific quantification of prey consumption by two benthivorous fish species (Gobio gobio and Barbatula barbatula) and several invertebrate predators. The estimation was based on daily food rations and diet composition of predators and mesohabitat-specific predator biomass. We found clear differences between the two mesohabitat types. Predator food webs were less complex in pools than in riffles. Fish predation was more important than invertebrate predation in pools, and intraguild predation had a higher relative importance in these mesohabitats. These differences were probably caused by the mesohabitat use of G. gobio, the largest top predator, which preferred pools. Consequently, the predator food webs were more similar between the mesohabitats when fish were absent. Top–down pressure on primary consumers by all predators together was lowest in pools without fish, but the effect was not significant. Omnivory (including cannibalism) was intense, but its potentially destabilising effects were probably counterbalanced by mesohabitat connectivity. From the results of our experimental study, we conclude that even in small stream ecosystems, food web structures and predation pathways can differ between mesohabitats and that a mesohabitat-specific consideration will help to explain the variety of top–down effects on benthic communities.  相似文献   

6.
Although the effects of abiotic factors on species distributions and habitat selection have been widely investigated, studies have rarely succeeded at identifying the factors behind selection at the microhabitat level. Spider webs are extended phenotypes expected to be subject to fitness trade-offs. We tested the hypothesis that spiders with three-dimensional webs (tangle and sheet-and-tangle), which require more material to be built than two-dimensional orbicular webs, occupy microhabitats where they are better protected from strong rains. We show that tangle and sheet-and-tangle webs were indeed significantly more likely to be under immediate cover than expected by chance and than orb webs. Tangle webs occurred closest to the cover and were largely protected, whereas sheet-and-tangle webs, likely due to their larger size and mostly horizontal position, tended to be more exposed. Sheet-and-tangle webs, however, occurred more often against tree trunks, where we show rain to be less intense. We further show that the proportion of 3D webs under immediate cover increased with annual precipitation along a dry to wet gradient in western Ecuador, an effect absent for 2D webs. The latter finding suggests that, in addition to using leaves for structural support, spiders with 3D webs seek microhabitat locations to shelter themselves and their webs from strong rains. Our findings illustrate how microhabitat selection may allow organisms to cope with abiotic factors at broader geographical scales, thus influencing organismal fitness and community structure.  相似文献   

7.
Jeff Scott Wesner 《Oikos》2012,121(1):53-60
Food webs in different ecosystems are often connected through spatial resource subsidies. As a result, biodiversity effects in one ecosystem may cascade to adjacent ecosystems. I tested the hypothesis that aquatic predator diversity effects cascade to terrestrial food webs by altering a prey subsidy (biomass and trophic structure of emerging aquatic insects) entering terrestrial food webs, in turn altering the distribution of a terrestrial consumer (spider) that feeds on emerging aquatic insects. Fish presence, but not diversity, altered the trophic structure of emerging aquatic insects by strongly reducing the biomass of emerging predators (dragonflies) relative to non‐feeding taxa (chironomid midges). Fish diversity reduced emerging insect biomass through enhanced effects on the most common prey taxa: predatory dragonflies Pantala flavescens and non‐feeding chironomids. Terrestrial spiders (Tetragnathidae) primarily captured emerging chironomids, which were reduced in the high richness (3 spp.) treatment relative to the 1 and 2 species treatments. As a result, terrestrial spider abundance was lower above pools with high fish richness (3 species) than pools with 1 and 2 species. Synergistic predation effects were mostly limited to the high richness treatment, in which fish occupied each level of vertical microhabitat in the water‐column (benthic, middle, surface). This study demonstrates that predator diversity effects are not limited to the habitat of the predator, but can propagate to adjacent ecosystems, and demonstrates the utility of using simple predator functional traits (foraging domain) to more accurately predict the direction of predator diversity effects.  相似文献   

8.
Variations in ambient light conditions across different microhabitats can modify the detectability of predators and prey. Prey have been shown to be more visible in sunlit than in shaded patches, leading to higher predation risk and more investment in vigilance (predation risk hypothesis). Additionally, prey have been hypothesized to take longer to detect predators in sunlit compared to shaded patches because of the excess of sunlight causing glare effects (disability glare hypothesis). We tested the predictions of these two non‐mutually exclusive hypotheses in a seminatural experiment with brown‐headed cowbirds by measuring vigilance behavior and detection of a ground predator in patches under the shade of vegetation and in the open. Light intensity and achromatic contrast were higher in the sunlit patches, which could enhance glare effects, but chromatic contrast was higher in the shaded patches. Brown‐headed cowbirds took longer to show alert reactions to and flee from a ground predator in sunlit compared to shaded patches. However, the two parameters associated with perceived predation risk (vigilance prior to the predator exposure and time to resume foraging after the attack) did not differ between sunlit and shaded patches. Our findings support to a greater extent the disability glare hypothesis than the predation risk hypothesis. Overall, ambient light conditions can affect two critical components of behavioral predator–prey interactions in terrestrial habitats: detection of and escape from predators. The effects of disability glare are expected to be more pronounced in bird species with wider visual fields or without sun‐shading structures; however, species may compensate through various behaviors (e.g. avoidance of sunlit patches and changes in head orientation).  相似文献   

9.
Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge.  相似文献   

10.
Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.  相似文献   

11.
Red imported fire ants, Solenopsis invicta, are generalist predators that can have major impacts on foliar arthropod communities in agricultural systems; however, their effects as predators at the soil surface have not been adequately characterized. We examined the contribution of fire ants to predation at the soil surface and in cotton foliage at two sites and over the course of two field seasons in Georgia, using egg masses of the beet armyworm, Spodoptera exigua. To assess interactions between fire ants and other arthropod species, we also measured the densities of edaphic predators and honeydew‐producing hemipterans at both sites. The sites occurred in different growing regions (Piedmont and Coastal Plain), and allowed us to characterize the importance of fire ants as predators under different climatic and soil conditions. Fire ant suppression decreased egg predation at both field sites, and predation by fire ants at the soil surface was equal to if not greater than that in cotton foliage. However, the impact of fire ants on predation varied between sites, likely due to differences in climate and the composition and activity of the extant arthropod communities. Our study also indicates that fire ant suppression is associated with decreases in the density of honeydew‐producing insects, and increasing abundance of whiteflies on the plants coincided with a decrease in egg predation at the soil surface. This finding suggests the mutualism between ants and whiteflies may lead to a shift in predation intensity from edaphic towards plant‐based food webs.  相似文献   

12.
It is widely held that when predator avoidance conflicts with other activities, such as feeding, avoidance of predators often takes precedence. In this study, we examine how predation risk and food distribution interact to influence the schooling behavior and swimming speed of foraging juvenile walleye pollock, Theragra chalcogramma. Fish were acclimated to either spatially and temporally clumped, or spatially and temporally dispersed food for 3 weeks. Fish were then monitored while feeding in the absence and presence of predatory sablefish, Anoplopoma fimbria. Fish foraging for clumped food swam rapidly in a loose school when predators were absent, but swam more slowly and adopted more cohesive schooling in the presence of predators, trading-off foraging opportunity for decreased vulnerability to predators. Fish foraging for dispersed food swam about slowly and did not engage in cohesive schooling in either the absence or presence of predators. These fish accepted greater predation risk in order to continue foraging, suggesting that the cost of schooling, in terms of decreased foraging opportunity, was greater when food was dispersed than when it was clumped. This lower responsiveness to predators among fish receiving dispersed food demonstrates that predator avoidance does not always take precedence over other activities, but rather, that a balance is maintained between predator avoidance and feeding, which shifts as food distribution changes.  相似文献   

13.
Ant-like appearance (myrmecomorphy) has evolved >70 times in insects and spiders, accounting for >2,000 species of myrmecomorphic arthropods. Most myrmecomorphic spiders are considered to be Batesian mimics; that is, a palatable spider avoids predation through resemblance to an unpalatable ant-although this presumption has been tested in relatively few cases. Here we explicitly examined the extent to which Peckhamia picata (Salticidae), a North American ant-mimicking jumping spider, is protected from four species of jumping spider predators, relative to nonmimetic salticids and model ants. In addition, we conducted focused behavioral observations on one salticid predator, Thiodina puerpera, to determine the point at which the predators' behaviors toward model, mimic, and nonmimic diverge. We also examined the behaviors of Peckhamia in the presence of Thiodina. We found that mimetic jumping spiders were consumed less than a third as often as nonmimetic jumping spiders, suggesting that Peckhamia does indeed gain protection as a result of its resemblance to ants, and so can be considered a Batesian mimic. Furthermore, our focal predator did not consume any ant-mimicking spiders, and seemed to categorize Peckhamia with its model ant early in the hunting sequence. Such early determination of prey versus nonprey may be the result of speed-accuracy trade-offs in predator decision-making.  相似文献   

14.
While the recent inclusion of parasites into food‐web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free‐living parasite life‐cycle stages (4–30%). Parasite life‐cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.  相似文献   

15.
Structurally complex habitats provide cover and may hinder the movement of animals. In predator–prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge’ effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator–prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.  相似文献   

16.
Abstract. 1. To investigate the role of intra-guild predation in mediating the impact of the natural enemy complex on herbivore populations, a manipulative field experiment was conducted using uncaged plots (islets of Spartina cordgrass) on a North American salt marsh. The densities (moderate or low) of two invertebrate predators, the generalist wolf spider Pardosa littoralis and the specialist mirid bug Tytthus vagus , were manipulated in a 2 × 2 factorial design, and the resulting treatment effects on the population growth of their herbivorous prey, Prokelisia planthoppers, were assessed.
2. The abundance of wolf spiders on experimental islets was unaffected by the presence of mirid bugs, however the density of mirid bugs was influenced very negatively by the presence of the wolf spider.
3. The negative effect of the wolf spider on mirid bugs most probably resulted from the intra-guild predation of mirids by spiders because planthopper limitation by the wolf spider alone was significantly greater than when both predators were present.
4. As a result of intra-guild predation, planthopper population growth was positive in the presence of both predators, despite the fact that each predator alone promoted a decrease in planthopper population growth.
5. Notably, the occurrence of intra-guild predation diminished top-down impacts on planthopper populations in a relatively simple food web where strong top-down effects were expected. This result, however, was limited to habitats on the marsh with simply structured vegetation lacking leaf litter.  相似文献   

17.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

18.
Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.  相似文献   

19.
Jean-Louis  Martin  Mathieu  Joron 《Oikos》2003,102(3):641-653
We used the introduction of a generalist nest predator, the red squirrel Tamiasciurus hudsonicus, and of a large herbivore, the Sitka black-tailed deer Odocoileus hemionus sitkensis, to the islands of Haida Gwaii (Queen Charlotte Islands, British Columbia, Canada) to study how predator assemblage and habitat quality and structure influenced nest predation in forest birds. We compared losses of natural nests to predators on islands with and without squirrels. We selected nine islands with or without squirrel or deer and used 506 artificial nests put on the ground or in shrubs to further analyse variation of nest predation with predator assemblage and habitat quality for the predators. For both natural and artificial nests predation risk was higher in presence of squirrels. But predation risk varied within island categories. In presence of squirrels it was highest in stands with mature conifers where it fluctuated from year to year, in response to fluctuations in squirrel abundance. Vegetation cover around the nest had little effect on nest predation by squirrels. Where squirrels were absent, nest predation concentrated near predictable food sources for corvids, the main native predators, and increased with decreasing vegetation cover, suggesting that removal of the vegetation by deer increased the risk of predation by native avian nest predators that use visual cues. Predation risk in these forests therefore varies in space and time with predator composition and with quality of the habitat from the predators' perspective. This temporal and spatial variation in predation risk should promote trade-offs in the response of birds to nest predation, rather than fine-tuned adaptations to a given predation pattern.  相似文献   

20.
1. Changes in one prey species' density can indirectly affect the abundance of another prey species if a shared predator eats both species. Sometimes, indirect effects occur when prey straddle habitats, including when riparian predator populations grow in response to emergent aquatic insects and increase predation on terrestrial prey. However, predators may largely switch to aquatic insects or become satiated, reducing predation on terrestrial prey. 2. To determine the net indirect effect of aquatic insects on terrestrial arthropods via generalist spider predators, a field experiment was conducted mimicking midge influx and a wolf spider numerical response inside enclosures near an Icelandic lake. Lab mesocosms were also used to assess per capita rates of spider predation u nder differing levels of midge abundance. 3. Midges always decreased sentinel prey predation, but this effect increased with predator density. When midges were absent, predation increased 30% at a high spider density, but predation was equal between spider treatments when midges were present. In situ arthropods showed no effect of midge or spider treatments, although non‐significant abundance patterns were observed congruent with sentinel prey results. 4. In lab mesocosms, prey survivorship increased ≥50% where midges were present and rapidly saturated; the addition of 5, 20, 50, and 100 midges equivalently reduced spider predation, supporting predator distraction rather than satiation as the root cause. 5. The present results demonstrate a strong positive indirect effect of midges and broadly support the concept that predator responses to alternative prey are a major influence on the magnitude and direction of predator‐mediated indirect effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号