共查询到20条相似文献,搜索用时 15 毫秒
1.
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection. 相似文献
2.
Lutz Fromhage Hanna Kokko Jane M. Reid 《Evolution; international journal of organic evolution》2009,63(3):684-694
The extent to which indirect genetic benefits can drive the evolution of directional mating preferences for more ornamented mates, and the mechanisms that maintain such preferences without depleting genetic variance, remain key questions in evolutionary ecology. We used an individual-based genetic model to examine whether a directional preference for mates with higher genome-wide heterozygosity ( H ), and consequently greater ornamentation, could evolve and be maintained in the absence of direct fitness benefits of mate choice. We specifically considered finite populations of varying size and spatial genetic structure, in which parent–offspring resemblance in heterozygosity could provide an indirect benefit of mate choice. A directional preference for heterozygous mates evolved under broad conditions, even given a substantial direct cost of mate choice, low mutation rate, and stochastic variation in the link between individual heterozygosity and ornamentation. Furthermore, genetic variance was retained under directional sexual selection. Preference evolution was strongest in smaller populations, but weaker in populations with greater internal genetic structure in which restricted dispersal increased local inbreeding among offspring of neighboring females that all preferentially mated with the same male. These results suggest that directional preferences for heterozygous or outbred mates could evolve and be maintained in finite populations in the absence of direct fitness benefits, suggesting a novel resolution to the lek paradox. 相似文献
3.
Jennifer L. Sanderson Jinliang Wang Emma I. K. Vitikainen Michael A. Cant Hazel J. Nichols 《Molecular ecology》2015,24(14):3738-3751
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited. 相似文献
4.
5.
Leggett HC El Mouden C Wild G West S 《Proceedings. Biological sciences / The Royal Society》2012,279(1732):1405-1411
Empirical data suggest that low levels of promiscuity have played a key role in the evolution of cooperative breeding and eusociality. However, from a theoretical perspective, low levels of promiscuity can favour dispersal away from the natal patch, and have been argued to select against cooperation in a way that cannot be explained by inclusive fitness theory. Here, we use an inclusive fitness approach to model selection to stay and help in a simple patch-structured population, with strict density dependence, where helping increases the survival of the breeder on the patch. Our model predicts that the level of promiscuity has either no influence or a slightly positive influence on selection for helping. This prediction is driven by the fact that, in our model, staying to help leads to increased competition between relatives for the breeding position-when promiscuity is low (and relatedness is high), the best way to aid relatives is by dispersing to avoid competing with them. Furthermore, we found the same results with an individual-based simulation, showing that this is not an area where inclusive fitness theory 'gets it wrong'. We suggest that our predicted influence of promiscuity is sensitive to biological assumptions, and that if a possibly more biologically relevant scenario were examined, where helping provided fecundity benefits and there was not strict density dependence, then low levels of promiscuity would favour helping, as has been observed empirically. 相似文献
6.
Matings between relatives lead to a decrease in offspring genetic diversity which can reduce fitness, a phenomenon known as inbreeding depression. Because alpine ungulates generally live in small structured populations and often exhibit a polygynous mating system, they are susceptible to inbreeding. Here, we used marker-based measures of pairwise genetic relatedness and inbreeding to investigate the fitness consequences of matings between relatives in a long-term study population of mountain goats ( Oreamnos americanus ) at Caw Ridge, Alberta, Canada. We first assessed whether individuals avoided mating with kin by comparing actual and random mating pairs according to their estimated genetic relatedness, which was derived from 25 unlinked polymorphic microsatellite markers and reflected pedigree relatedness. We then examined whether individual multilocus heterozygosity H , used as a measure of inbreeding, was predicted by parental relatedness and associated with yearling survival and the annual probability of giving birth to a kid in adult females. Breeding pairs identified by genetic parentage analyses of offspring that survived to 1 year of age were less genetically related than expected under random matings. Parental relatedness was negatively correlated with offspring H , and more heterozygous yearlings had higher survival to 2 years of age. The probability of giving birth was not affected by H in adult females. Because kids that survived to yearling age were mainly produced by less genetically related parents, our results suggest that some individuals experienced inbreeding depression in early life. Future research will be required to quantify the levels of gene flow between different herds, and evaluate their effects on population genetic diversity and dynamics. 相似文献
7.
Phillip G. Byrne Juan Diego Gaitan‐Espitia Aimee J. Silla 《Evolution; international journal of organic evolution》2019,73(9):1972-1985
Sequential polyandry may evolve as an insurance mechanism to reduce the risk of females choosing mates who are genetically inferior (intrinsic male quality hypothesis) or genetically incompatible (genetic incompatibility hypothesis). The prevalence of such indirect benefits remains controversial, however, because studies estimating the contributions of additive and nonadditive sources of genetic variation to offspring fitness have been limited to a small number of taxonomic groups. Here, we used artificial fertilization techniques combined with a crossclassified breeding design (North Carolina Type II) to simultaneously test the “good genes hypothesis” and the “genetic incompatibility hypothesis” in the brown toadlet (Pseudophryne bibronii); a terrestrial‐breeding species with extreme sequential polyandry. Our results revealed no significant additive or nonadditive genetic effects on fertilization success. Moreover, they revealed no significant additive genetic effects, but highly significant nonadditive genetic effects (sire by dam interaction effects), on hatching success and larval survival to initial and complete metamorphosis. Taken together, these results indicate that offspring viability is significantly influenced by the combination of parental genotypes, and that negative interactions between parental genetic elements manifest during embryonic and larval development. More broadly, our findings provide quantitative genetic evidence that insurance against genetic incompatibility favors the evolution and maintenance of sequential polyandry. 相似文献
8.
Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post‐copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post‐copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post‐copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post‐copulatory inbreeding avoidance might cause functional redundancy (i.e. ‘degeneracy’) potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual‐based modelling to quantify evolution of interacting precopulatory and post‐copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post‐copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower‐cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post‐copulatory inbreeding avoidance, but fixed post‐copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post‐copulatory inbreeding avoidance is precluded or costly, and evolution of post‐copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry. 相似文献
9.
Austerlitz F Gleiser G Teixeira S Bernasconi G 《Proceedings. Biological sciences / The Royal Society》2012,279(1726):91-100
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion. 相似文献
10.
1. Subordinate helpers in cooperative societies may gain both immediate and future benefits, including paternity and territorial inheritance. However, if such opportunities correlate with rank in the queue, it is unclear why such queues should be stable. 2. In cooperatively breeding superb fairy-wrens Malurus cyaneus, only males are generally philopatric, and form stable hierarchical queues for the dominant position. 3. Male opportunities for reproduction are influenced both by their dominance status within the group, and their relatedness to the breeding female. For young queuing subordinates, the breeding female is typically their mother. Because of incest avoidance, reproduction is possible only through extra-group mating, even if the dominant position is achieved while the mother is still on the territory. If the mother dies while the helper is still a subordinate, he can seek matings both outside the group, and with the unrelated replacement female within the group. Finally, males can achieve the dominant position and pair with an unrelated female by inheritance, dispersal to a neighbouring vacancy, or by forming a liaison with an immigrant subordinate female that causes fission of the natal territory. 4. On average males spent more time living with unrelated females than with their mother. Subordinate males gained no survival advantages when living with their mother rather than an unrelated female, contrary to the prediction that parents facilitate the survival of their offspring. 5. Dominants and subordinates also had similar survival. Mortality accelerated over time, probably because older males invest more in extra-group courtship display. 6. Fairy-wren queues are likely to be stable because older birds are superior, and because extra-pair mating provides direct benefits to subordinates. 相似文献
11.
12.
A number of social mole-rat species maintain a strong reproductive skew (only one breeding pair in the group) solely through incest avoidance. Incest avoidance probably evolved for one of two reasons, namely for actually maintaining a reproductive skew or, alternatively, to avoid high inbreeding depression. In the latter case a strong reproductive skew would result as a fortuitous by-product of the combination of a cloistral family life style of mole-rats and incest avoidance. We undertook breeding experiments in which the fertility of pairs of unrelated individuals were compared with that of pairs of double first cousins. Inbreeding depression was remarkably high and an accompanying model suggests that it may be sufficient to support the idea that strong incest avoidance evolved primarily to eliminate the costs of inbreeding and subsequently facilitated the evolution of reproductive skew. 相似文献
13.
Rebecca J. Sardell Emily H. DuVal 《Proceedings. Biological sciences / The Royal Society》2014,281(1774)
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons. 相似文献
14.
Hansson Bengt; Jack Lucy; Christians Julian K.; Pemberton Josephine M.; Akesson Mikael; Westerdahl Helena; Bensch Staffan; Hasselquist Dennis 《Behavioral ecology》2007,18(1):157-164
Inbreeding depression may drive the evolution of inbreedingavoidance through dispersal and mate choice. In birds, manyspecies show female-biased dispersal, which is an effectiveinbreeding avoidance mechanism. In contrast, there is scarceevidence in birds for kin discriminative mate choice, whichmay, at least partly, reflect difficulties detecting it. First,kin discrimination may be realized as dispersal, and this isdifficult to distinguish from other causes of dispersal. Second,even within small, isolated populations, it is often difficultto determine the potential candidates available to a femalewhen choosing a mate. We sought evidence for inbreeding avoidancevia kin discrimination in a breeding population of great reedwarblers (Acrocephalus arundinaceus) studied over 17 years.Inbreeding depression is strong in the population, suggestingthat it would be adaptive to avoid relatives as mates. Detaileddata on timing of settlement and mate search movements madeit possible to identify candidate mates for each female, andlong-term pedigrees and resolved parentage enabled us to estimaterelatedness between females and their candidate mates. We foundno evidence for kin discrimination: mate choice was random withrespect to relatedness when all mate-choice events were considered,and, after correction for multiple tests, also in all breedingyears. We suggest that dispersal is a sufficient inbreedingavoidance mechanism in most situations, although the lack ofkin discriminative mate choice has negative consequences forsome females, because they end up mating with closely relatedmales that lowers their fitness. 相似文献
15.
Griffin Ashleigh S.; Pemberton Josephine M.; Brotherton Peter N. M.; McIlrath Grant; Gaynor David; Kansky Ruth; O'Riain Justin; Clutton-Brock Timothy H. 《Behavioral ecology》2003,14(4):472-480
Measurement of reproductive skew in social groups is fundamentalto understanding the evolution and maintenance of sociality,as it determines the immediate fitness benefits to helpers ofstaying and helping in a group. However, there is a lack ofstudies in natural populations that provide reliable measuresof reproductive skew and the correlates of reproductive success,particularly in vertebrates. We present results of a study thatuses a combination of field and genetic (microsatellite) dataon a cooperatively breeding mongoose, the meerkat (Suricatasuricatta). We sampled 458 individuals from 16 groups at twosites and analyzed parentage of pups in 110 litters with upto 12 microsatellites. We show that there is strong reproductiveskew in favor of dominants, but that the extent of skew differsbetween the sexes and between different sites. Our data suggestthat the reproductive skew arises from incest avoidance andreproductive suppression of the subordinates by the dominants. 相似文献
16.
Andrea K. Townsend Conor C. Taff Melissa L. Jones Katherine H. Getman Sarah S. Wheeler Mitch G. Hinton Ryane M. Logsdon 《Molecular ecology》2019,28(5):1116-1126
Although matings between relatives can have negative effects on offspring fitness, apparent inbreeding preference has been reported in a growing number of systems, including those with documented inbreeding depression. Here, we examined evidence for inbreeding depression and inbreeding preference in two populations (Clinton, New York, and Davis, California, USA) of the cooperatively breeding American crow (Corvus brachyrhynchos). We then compared observed inbreeding strategies with theoretical expectations for optimal, adaptive levels of inbreeding, given the inclusive fitness benefits and population‐specific magnitude of inbreeding depression. We found that low heterozygosity at a panel of 33 microsatellite markers was associated with low survival probability (fledging success) and low white blood cell counts among offspring in both populations. Despite these costs, our data were more consistent with inbreeding preference than avoidance: The observed heterozygosity among 396 sampled crow offspring was significantly lower than expected if local adults were mating by random chance. This pattern was consistent across a range of spatial scales in both populations. Adaptive levels of inbreeding, given the magnitude of inbreeding depression, were predicted to be very low in the California population, whereas complete disassortative mating was predicted in the New York population. Sexual conflict might have contributed to the apparent absence of inbreeding avoidance in crows. These data add to an increasing number of examples of an “inbreeding paradox,” where inbreeding appears to be preferred despite inbreeding depression. 相似文献
17.
J. Winternitz J. L. Abbate E. Huchard J. Havlíček L. Z. Garamszegi 《Molecular ecology》2017,26(2):668-688
Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC‐based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC‐mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta‐analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC‐diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC‐dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC‐dissimilar and MHC‐similar mates. Focusing on MHC‐similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC‐based mate choice. Additionally, the overall effect sizes of primate MHC‐based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC‐diverse mates is significant for humans and likely conserved across primates. 相似文献
18.
Dispersal is an important mechanism used to avoid inbreeding. However, dispersal may only be effective for part of an individual's lifespan since, post-dispersal individuals that breed over multiple reproductive events may risk mating with kin of the philopatric sex as they age. We tested this hypothesis in black grouse Tetrao tetrix, and show that yearling females never mated with close relatives whereas older females did. However, matings were not with direct kin suggesting that short-distance dispersal to sites containing kin and subsequent overlap of reproductive lifespans between males and females were causing this pattern. Chick mass was lower when kinship was high, suggesting important fitness costs associated with inbred matings. This study shows that increased inbreeding risk might be a widespread yet rarely considered cost of ageing. 相似文献
19.
20.
Reid JM Arcese P Keller LF 《Evolution; international journal of organic evolution》2008,62(4):887-899
Inbreeding load, a key parameter in evolutionary ecology, is frequently estimated by regressing fitness (or related traits) on inbreeding coefficient across population members. This approach assumes that inbreeding occurs randomly with respect to an individual's intrinsic ability to produce fit offspring; estimated loads might otherwise be biased by covariation between inbreeding and individual quality. This assumption, however, is rarely validated. We tested whether, in free-living song sparrows Melospiza melodia, an individual's observed kinship with its social mate (and hence the degree of inbreeding in which an individual participated) was correlated with specific phenotypic traits that are likely to indicate individual quality. Males (and to some extent females) that hatched earlier within their cohort, had shorter tarsi, bred earlier during their first year, or survived fewer years paired with more closely related mates and therefore produced relatively inbred offspring. These correlations arose because males with specific phenotypes were more closely related to the female population (and therefore more likely to pair with closer relatives under random pairing), and because males with specific phenotypes paired with closer relatives than expected. Such correlations could bias estimated inbreeding loads, and should be considered in quantitative genetic analyses of phenotypic variance in populations in which inbreeding occurs. 相似文献