首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species adapt to the selective pressures of novel environments. Here, Gleditsch and Sperry tested whether four nonnative frugivorous bird species on the Hawaiian island of O'ahu diverged morphologically from their ancestral populations. They found that all four species significantly diverged from populations in their native ranges, with a general trend of smaller body size and larger bills. These differences were likely due to a combination of adaptive and nonadaptive processes.  相似文献   

2.
Human-mediated dispersal along the road network is a crucial process in the population dynamics of roadside vegetation and during plant invasions. The potential for a species to be dispersed by vehicles is, however, difficult to quantify. The predictive power of categorical classification schemes of human-mediated dispersal is limited as many species that are usually attributed to particular primary dispersal vectors may become subject to very different secondary dispersal vectors owing to human activity. Analysing seed traits that promote seed transport by human dispersal vectors could overcome these limitations. However, the analysis has to account for the divergent chance of seed transport that results from different propagule pressures along the transport corridor.To reveal the effects of seed traits and their interplay with propagule pressure on the chance and magnitude of human-mediated dispersal by vehicles, we compared traits and regional frequencies of a set of species that were dispersed by vehicles to a control set not dispersed but present in the same study area. We then used the same traits for a comparison of intentionally and unintentionally introduced species with the flora of Berlin.Different traits influenced the chance of vehicle dispersal and its magnitude. While propagule pressure was most important for determining the magnitude of seed transport, small seed mass and size best predicted the absolute chance of species dispersal by vehicles. The dispersal of nonnative species was least dependent on propagule pressure.Seed traits that were important in vehicle dispersal were similarly reflected in unintentionally introduced species in the Berlin flora. Mean seed size of these species was lower compared to the entire Berlin flora, whereas it was higher for intentionally introduced species. This suggests that unintentional introduction of nonnative plant species pre-selects for seed traits that promote further spread by human-mediated adhesive dispersal.Probability and magnitude of adhesive seed transport by vehicles can be predicted by dispersal-related plant traits. However, the effect size of plant traits on dispersal strongly depends on regional propagule pressure. This highlights the need to analyse interactions between species traits and propagule pressure.  相似文献   

3.
Seed dispersal is a fundamental process that is highly threatened by the rapid decline of large-bodied frugivores worldwide. The Brazilian Cerrado, the largest savanna in the world, represents an ideal site for investigating seed dispersal because of its biodiversity, environmental challenges, and knowledge shortfalls. We performed a systematic literature review to analyze the seed dispersal network in the Cerrado and the potential impacts of the defaunation of large-bodied frugivores on it. We considered network metrics, calculated the defaunation index of the frugivore assemblage, and compared traits among different fruit-sized plants and their respective dispersers in the network. We retrieved 1565 interactions involving 193 plant species and 270 animal species. Results show that the Cerrado seed dispersal network is slightly nested and considerably modular, dominated by small- to medium-sized generalist species, such as passerines, marsupials, and mesocarnivores. Nonetheless, large-bodied frugivores like the lowland tapir have a key role in the network due to their great foraging and network integration capacity. The Cerrado frugivore assemblage is moderately defaunated, with possible effects in its interactions with large-fruited plants. The Cerrado's defaunation and functional loss of large vertebrates deserve urgent attention to further understand the impacts on seed dispersal mechanisms and ecosystem functioning.  相似文献   

4.
Fleshy-fruited plants rely on animal frugivores to disperse their seeds, and seed removal by frugivores may leave an imprint on seedling recruitment. However, to what extent plant–frugivore interactions are related to seedling recruitment has rarely been quantified at the community level, especially in species-rich tropical forests. In this study, we tested the effect of different plant traits on fruit removal by frugivores and tested the relative importance of fruit removal, plant traits and abiotic factors for seedling recruitment. We quantified plant–frugivore interactions of 22 fleshy-fruited plant species consumed by 56 diurnal frugivore species, and counted the number of seedlings that emerged along an elevational gradient in the Colombian Andes. We measured a set of plant traits (i.e., crop size; fruit size; seed load and mass; fruit nutritional contents), estimated the density of adult plants and recorded relevant abiotic factors (light, temperature and humidity). We found that fruit removal by frugivores was positively associated with crop size, but negatively associated with fruit length and unrelated to seed load and fruit nutritional content. Seedling densities were positively related to the density of adult plants, seed mass and fruit removal by animals. We found no relationship between abiotic factors and seedling recruitment. Our results indicate that fruit abundance and morphology are important determinants of fruit removal and that fruit removal is positively associated with seedling recruitment accounting for effects of species abundance and plant traits. We conclude that plant traits shape fruit removal and seedling recruitment at the community level, while these two crucial processes of forest regeneration are directly linked by seed dispersal of animals.  相似文献   

5.
The traits of animals and plants influence their interaction networks, but the significance of species' traits for the resulting ecosystem functions is poorly understood. A crucial ecosystem function in the tropics is seed dispersal by animals. While the importance of species' traits for structuring plant–frugivore networks is supported by a number of studies, no study has so far identified the functional traits determining the subsequent processes of fruit removal and seedling recruitment. Here, we conducted a comprehensive field study on fruit removal by frugivorous birds and seedling recruitment along an elevational gradient in the Colombian Andes. We measured morphological traits of birds (body mass, bill width, Kipp's index) and plants (plant height, crop mass, fruit width and seed mass) which we expected to be related to fruit removal and seedling recruitment. We tested 1) which bird and plant traits influence fruit removal, and 2) whether network metrics at plant species level, functional identities of frugivores (community‐based mean trait values) and/or plant traits were the main determinants of seedling recruitment. We found that large‐bodied bird species contributed more to fruit removal than small‐bodied bird species and that small‐sized fruits were more frequently removed than large‐sized fruits. Small plant species and plants with heavy seeds recruited more seedlings than did large plants and plants with light seeds. Network metrics and functional identities of seed dispersers were unrelated to seedling recruitment. Our findings have two important implications. First, large birds are functionally more important than small birds in tropical seed‐removal networks. Second, the detected tradeoff between fruit size and seed mass in subsequent recruitment processes suggests that the adaptability of forest plant communities to a loss of large frugivores is limited by life‐history constraints. Hence, the protection of large‐bodied frugivores is of primary importance for the maintenance of diverse tropical plant communities.  相似文献   

6.
Although seed-dispersal networks are increasingly used to infer the functioning of ecosystems, few studies have investigated the link between the properties of these networks and the ecosystem function of seed dispersal by animals. We investigate how frugivore communities and seed dispersal change with habitat disturbance and test whether relationships between morphological traits and functional roles of seed dispersers change in response to human-induced forest edges. We recorded interaction frequencies between fleshy fruited plants and frugivorous bird species in tropical montane forests in the Bolivian Andes and recorded functional bird traits (body mass, gape width and wing tip length) associated with quantitative (seed-removal rate) and qualitative (seed-deposition pattern) components of seed-dispersal effectiveness. We found that the abundance and richness of frugivorous birds were higher at forest edges. More fruits were removed and dispersed seeds were less clustered at edges than in the interior. Additionally, functional and interaction diversity were higher at edges than in the interior, but functional and interaction evenness did not differ. Interaction strength of bird species increased with body mass, gape width and wing tip length in the forest interior, but was not related to bird morphologies at forest edges. Our study suggests that increases in functional and interaction diversity and an even distribution of interaction strength across bird morphologies lead to enhanced quantity and tentatively enhanced quality of seed dispersal. It also suggests that the effects of species traits on ecosystem functions can vary along small-scale gradients of human disturbance.  相似文献   

7.
Forest fragmentation and local disturbance are prevailing threats to tropical forest ecosystems and affect frugivore communities and animal seed dispersal in different ways. However, very little is known about the effects of anthropogenic forest edges and of local disturbance on the structure and robustness of plant–frugivore networks. We carried out focal tree observations to record the frugivore species feeding on eight canopy tree species in the forest interior and at forest–farmland edges in a little and a highly disturbed part of a Kenyan rain forest. For each frugivore species, we recorded its body mass and its forest dependence. We examined how forest edge and local disturbance affected the abundance, the richness and the composition of the frugivore community and tested whether forest edge and local disturbance affected plant frugivore networks. Abundance and species richness of frugivores were higher at edges than in the forest interior. Forest visitors and small‐bodied frugivores increased, while forest specialists decreased in abundance at forest edges. The changes in frugivore community composition resulted in plant–frugivore networks that were more connected, more nested and more robust against species extinctions at forest–farmland edges than in the forest interior. Network specialization was lower at forest edges than in the forest interior because at the edges plant specialization on frugivores was very low in small‐fruited species. In contrast, small‐fruited plants were more specialized than large‐fruited plants in the forest interior. Our findings suggest that forest‐visiting birds may stabilize seed‐dispersal services for small‐fruited plant species at rain forest margins, while seed‐dispersal services for large‐fruited plant species may be disrupted at forest edges due to the decrease of large‐bodied frugviores. To assess the ultimate consequences of bird movements from farmland to forest edges for ecosystem functioning, future studies are required to investigate the seed‐dispersal qualities provided by forest‐visiting bird species in the tropics.  相似文献   

8.
Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant–frugivore communities vis‐a‐vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant–seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant–seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island‐mainland comparison revealed that the island plant–seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant–frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant–seed disperser communities between a tropical island and mainland and demonstrates key role played by a point‐endemic frugivore in seed dispersal on island.  相似文献   

9.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

10.
Seed dispersal systems in degraded areas can be compromised following the decline of large-bodied frugivore populations responsible for their dispersal. In this context we examined the seed dispersal ecology of a large fruited deciduous tree (Dillenia pentagyna) along a forest degradation gradient in India. We examined the effect of structural components of vegetation and frugivore foraging behavior on D. pentagyna seed dispersal. Depauperate mammalian community and declined large avian frugivores e.g. hornbills in our study site make this system a specialized one and currently dependent on only two large bodied avian frugivores. Seed dispersal followed an overall leptokurtic pattern and the seed dispersal kernels were best explained by an inverse power function. Seed dispersal kernels in dense forest indicated longer dispersal distances than moderately dense forest and degraded forest. In degraded areas, no dispersal away from the crown was recorded for D. pentagyna and it occurred at low density. Canopy foliage abundance of the surrounding vegetation of the focal trees was best explained by quantity of seed dispersal by large avian frugivores. The number of avian frugivore species those are effective disperser of D. pentagyna decreased along the degradation gradient. Avian frugivore behavior in terms of visitation and seed swallowed is a determining factor that controls quantity of seed dispersal. Our study underscores deleterious impact of forest degradation on avian disperser community which in turn would affect regeneration capacity of degraded forest.  相似文献   

11.
Points of origin and pathways of spread are often poorly understood for introduced parasites that drive disease emergence in imperiled native species. Co‐introduction of parasites with non‐native hosts is of particular concern in remote areas like the Hawaiian Islands, where the introduced nematode Camallanus cotti has become the most prevalent parasite of at‐risk native stream fishes. In this study, we evaluated the prevailing hypothesis that C. cotti entered the Hawaiian Islands with poeciliid fishes from the Americas, and spread by translocation of poeciliid hosts across the archipelago for mosquito control. We also considered the alternative hypothesis of multiple independent co‐introductions with host fishes originating from Asia. We inferred conduits of introduction and spread of C. cotti across the archipelago from geographic patterns of mtDNA sequence variation and allelic variation across 11 newly developed microsatellite markers. The distribution of haplotypes suggests that C. cotti spread across the archipelago following an initial introduction on O'ahu. Approximate Bayesian Computation modeling and allelic variation also indicate that O'ahu is the most likely location of introduction, from which C. cotti dispersed to Maui followed by spread to the other islands in the archipelago. Evidence of significant genetic structure across islands indicates that contemporary dispersal is limited. Our findings parallel historical records of non‐native poeciliid introductions and suggest that remediating invasion hotspots could reduce the risk of infection in native stream fishes, which illustrates how inferences on parasite co‐introductions can improve conservation efforts by guiding responses to emerging infectious disease in species of concern.  相似文献   

12.
Animal movement and behaviour is fundamental for ecosystem functioning. The process of seed dispersal by frugivorous animals is a showcase for this paradigm since their behaviour shapes the spatial patterns of the earliest stage of plant regeneration. However, we still lack a general understanding of how intrinsic (frugivore and plant species traits) and extrinsic (landscape features) factors interact to determine how seeds of a given species are more likely to be deposited in some places more than in others. We develop a multi-species mechanistic model of seed dispersal based on frugivore behavioural responses to landscape heterogeneity. The model was fitted to data from three-years of spatially-explicit field observations on the behaviour of six frugivorous thrushes and the fruiting patterns of three fleshy-fruited trees in a secondary forest of the Cantabrian range (N Spain). With such model we explore how seed rain patterns arise from the interaction between animal behaviour and landscape heterogeneity. We show that different species of thrushes respond differently to landscape heterogeneity even though they belong to the same genus, and that provide complementary seed dispersal functions. Simulated seed rain patterns are only realistic when at least some landscape heterogeneity (forest cover and fruit abundance) is taken into account. The common and simple approach of re-sampling movement data to quantify seed dispersal produces biases in both the distance and the habitat at which seeds arrive. Movement behaviour not only affects dispersal distance and seed rain patterns but also can affect frugivore diet composition even if there is no built-in preference for fruiting species. In summary, the fate of seeds produced by a given plant species is strongly affected by both the composition of the frugivore assemblage and the landscape-scale context of the plant location, including the presence of fruits from other plants (from the same or different species).  相似文献   

13.
Understanding differences in the components of life‐cycle stages of species between their native and introduced ranges can provide insights into the process of species transitioning from introduction to naturalization and invasion. We examined reproductive variables of the germination (seed predation, seed viability, time to germination), seed output (crown projection, seed production, seed weight) and dispersal (seed weight, dispersal investment) stages of five woody Fabaceae species, comparing native and introduced ranges. We predicted that each species would differ in reproductive variables of at least one life‐cycle stage between their native and introduced ranges, thus allowing us to determine the life‐cycle stage most associated with invasion success in the introduced range. Acacia melanoxylon and Paraserianthes lophantha had reduced seed predation in their introduced ranges while P. lophantha also had higher seed viability indicating that the germination life‐cycle stage is most strongly associated with their invasion success in the introduced range. Only Acacia longifolia varied between ranges for the seed output stage due to larger plant size, greater seed production and smaller seed size in its introduced range. Similar to A. longifolia, Acacia cyclops had smaller seed size in its introduced range but did not have any other variable differences between ranges suggesting that the dispersal stage is best associated with its invasion success in the introduced range. Surprisingly, Acacia saligna was the only species without a clear life‐cycle stage difference between ranges despite it being one of the more invasive acacia species in Australia. Although we found clear differences in reproductive variables associated with life‐cycle stages between native and introduced ranges of these five species, these differences were largely species‐specific. This suggests that a species invasion strategy into a novel environment is complex and varies among species depending on the environmental context, phenotypic plasticity and genotypic variation in particular traits.  相似文献   

14.
Although global declines in frugivores may disrupt seed dispersal mutualisms and inhibit plant recruitment, quantifying the likely reduction in plant regeneration has been difficult and rarely attempted. We use a manipulative factorial experiment to quantify dependence of recruitment on dispersal (i.e. fruit pulp removal and movement of seed away from parental area) in two large-seeded New Zealand tree species. Complete dispersal failure would cause a 66 to 81 per cent reduction in recruitment to the 2-year-old seedling stage, and synergistic interactions with introduced mammalian seed and seedling predators increase the reduction to 92 to 94 per cent. Dispersal failure reduced regeneration through effects on seed predation, germination and (especially) seedling survival, including distance- and density-dependent (Janzen-Connell) effects. Dispersal of both species is currently largely dependent on a single frugivore, and many fruits today remain uneaten. Present-day levels of frugivore loss and mammal seed and seedling predators result in 57 to 84 per cent fewer seedlings after 2 years. Our study demonstrates the importance of seed dispersal for local plant population persistence, and validates concerns about the community consequences of frugivore declines.  相似文献   

15.
Primates are among the most important seed dispersers in the habitats they occupy. Understanding the extent of, and gaps in, our knowledge of seed dispersal by Asian primates is essential, because many of these primates are extremely vulnerable to anthropogenic disturbance. In this review, I show how initial studies focused on the role of individual species in seed dispersal have expanded more recently to consider their role in the wider frugivore community. There are five functional groups of primate seed dispersers in Asia; most of our information comes from the (usually) highly frugivorous macaques and gibbons, while our understanding of the roles played by orangutans and, especially, colobines and lorises remains rudimentary. Preliminary community-wide studies suggest a pivotal role for gibbons and macaques in frugivore communities, with higher dispersal overlap with other mammals than with birds. The gaps in our knowledge are plentiful, however, including understanding fruit selection in detail, determining how seed dispersal roles might change across different habitats, evaluating the balance between mutualisms and antagonisms in orangutans and macaques, describing postdispersal processes, and documenting how habitats are impacted by changes in primate abundance and behavior.  相似文献   

16.
Aim To investigate whether six plant life‐history traits that have been related to colonization ability at local scales are also related to the geographical range characteristics of 273 forest plant species. Location Continental western Europe, five countries in particular: France, Luxemburg, Belgium, the Netherlands and Germany. The region is situated between 42° and 55°N and 5°W and 15°E and has a summed total area of 971,404 km2. Methods Distribution data were compiled from five national data bases and converted to a 10′ grid. Life‐history traits were taken from existing compilations of autecological information of European species. The spatial arrangement of occupied grid cells was investigated using Ripley's K. Cross‐species correlations and phylogenetically independent contrasts were used to investigate the relationships between plant life‐history traits and three range characteristics: area of occupancy, latitudinal extent and centroid latitude. Results For herbaceous species, seed dispersal mode, seed production and seed bank longevity exhibited significant associations with geographical range characteristics, including area of occupancy. Woody plant species exhibited fewer significant associations, although maximum height was positively associated with range centroid latitude within the study area. Furthermore, the ranges of species with limited dispersal ability were found to be more clustered than the ranges of species with morphological adaptations for long‐distance seed dispersal. Main conclusions For western European forest plant species, life‐history traits that are related to colonization ability at local scales are associated with variation in large‐scale geographical range characteristics. This finding implies that the distributions of some forest plant species in the study area may be limited by seed dispersal and colonization capacity rather than climate or other environmental factors.  相似文献   

17.
Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.  相似文献   

18.
Mutualistic interactions form the basis for many ecological processes and are often analyzed within the framework of ecological networks. These interactions can be sampled with a range of methods and first analyses of pollination networks sampled with different methods showed differences in common network metrics. However, it is yet unknown if metrics of seed dispersal networks are similarly affected by the sampling method and if different methods detect a complementary set of frugivores. This is necessary to better understand the (dis-)advantages of each method and to identify the role of each frugivore for the seed dispersal process. Here, we compare seed removal networks based on the observation of 2189 frugivore visits on ten focal plant species with seed deposition networks constructed by DNA barcoding of plant seeds in 3094 frugivore scats. We were interested in whether both methods identify the same disperser species and if species-level network metrics of plant species were correlated between network types. Both methods identified the same avian super-generalist frugivores, which accounted for the highest number of dispersed seeds. However, only with DNA barcoding, we detected elusive but frequent mammalian seed dispersers. The overall networks created by both methods were congruent but the plant species' degree, their interaction frequency and their specialization index (d′) differed. Our study suggests that DNA barcoding of defecated and regurgitated seeds can be used to construct quantitative seed deposition networks similar to those constructed by focal observations. To improve the overall completeness of seed dispersal networks it might be useful to combine both methods to detect interactions by both birds and mammals. Most importantly, the DNA barcoding method provides information on the post-dispersal stage and thus on the qualitative contribution of each frugivore for the plant community thereby linking species interactions to regeneration dynamics of fleshy-fruited plant species.  相似文献   

19.
Intra and interspecific variation in frugivore behaviour can have important consequences for seed dispersal outcomes. However, most information comes from among‐species comparisons, and within‐species variation is relatively poorly understood. We examined how large intraspecific differences in the behaviour of a native disperser, blackbuck antelope Antilope cervicapra, influence dispersal of a woody invasive, Prosopis juliflora, in a grassland ecosystem. Blackbuck disperse P. juliflora seeds through their dung. In lekking blackbuck populations, males defend clustered or dispersed mating territories. Territorial male movement is restricted, and within their territories males defecate on dung‐piles. In contrast, mixed‐sex herds range over large areas and do not create dung‐piles. We expected territorial males to shape seed dispersal patterns, and seed deposition and seedling recruitment to be spatially localized. Territorial males had a disproportionately large influence on seed dispersal. Adult males removed twice as much fruit as females, and seed arrival was disproportionately high on territories. Also, because lek‐territories are clustered, seed arrival was spatially highly concentrated. Seedling recruitment was also substantially higher on territories compared with random sites, indicating that the local concentration of seeds created by territorial males continued into high local recruitment of seedlings. Territorial male behaviour may, thus, result in a distinct spatial pattern of invasion of grasslands by the woody P. juliflora. An ex situ experiment showed no beneficial effect of dung and a negative effect of light on seed germination. We conclude that large intraspecific behavioural differences within frugivore populations can result in significant variation in their effectiveness as seed dispersers. Mating strategies in a disperser could shape seed dispersal, seedling recruitment and potentially plant distribution patterns. These mating strategies may aid in the spread of invasives, such as P. juliflora, which could, in turn, negatively influence the behaviour and ecology of native dispersers.  相似文献   

20.
Dispersal is an important ecological process that affects plant population structure and community composition. Invasive plants with fleshy fruits rapidly form associations with native and invasive dispersers, and may affect existing native plant-disperser associations. We asked whether frugivore visitation rate and fruit removal was associated with plant characteristics in a community of fleshy-fruited plants and whether an invasive plant receives more visitation and greater fruit removal than native plants in a semi-arid habitat of Andhra Pradesh, India. Tree-watches were undertaken at individuals of nine native and one invasive shrub species to assess the identity, number and fruit removal by avian frugivores. Network analyses and generalised linear mixed-effects models were used to understand species and community-level patterns. All plants received most number of visits from abundant, generalist avian frugivores. Number of frugivore visits and time spent by frugivores at individual plants was positively associated with fruit crop size, while fruit removal was positively associated with number of frugivore visits and their mean foraging time at individual plants. The invasive shrub, Lantana camara L. (Lantana), had lower average frugivore visit rate than the community of fleshy-fruited plants and received similar average frugivore visits but greater average per-hour fruit removal than two other concurrently fruiting native species. Based on the results of our study, we infer that there is little evidence of competition between native plants and Lantana for the dispersal services of native frugivores and that more data are required to assess the nature of these interactions over the long term. We speculate that plant associations with generalist frugivores may increase the functional redundancy of this frugivory network, buffering it against loss of participating species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号