首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the ‘P700 oxidation capacity’ of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast–mitochondrion interactions able to overcome lesions in energy metabolism.  相似文献   

2.
Mitochondrial contribution to photosynthetic metabolism during photosynthetic induction was investigated in protoplasts from barley leaves ( Hordeum vulgare L. cv. Gunilla, Svalöf) by using an inhibitor of mitochondrial Complex I (rotenone) and an inhibitor of the mitochondrial ATPase (oligomycin). Both inhibitors increased the lag phase of photosynthetic induction after the transition of protoplasts from darkness to light. This effect was not observed with broken protoplasts or isolated chloroplasts. Using the method of rapid fractionation of protoplasts it was shown that the delay in photosynthetic induction was accompanied by a decrease in ATP/ADP ratios of the cytosol and mitochondria, whereas the ratio in chloroplasts was not affected. A delay in activation of chloroplastidic NADP‐dependent malate dehydrogenase (EC 1.1.1.82) was observed in the presence of either inhibitor. A delay was also observed in the rise of photochemical quenching of chlorophyll fluorescence in the presence of rotenone or oligomycin during photosynthetic induction. The results indicate that during the transition from dark to light the mitochondrial electron transport chain and its Complex I participate in the reoxidation of excessive redox equivalents from photosynthetic electron transport.  相似文献   

3.
The present study suggests the importance of reactive oxygen species (ROS) and antioxidant metabolites as biochemical signals during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation at saturating light and optimal CO2. Changes in steady-state photosynthesis of pea mesophyll protoplasts monitored in the presence of antimycin A [AA, inhibitor of cytochrome oxidase (COX) pathway] and salicylhydroxamic acid [SHAM, inhibitor of alternative oxidase (AOX) pathway] were correlated with total cellular ROS and its scavenging system. Along with superoxide dismutase (SOD) and catalase (CAT), responses of enzymatic components—ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), glutathione reductase (GR) and non-enzymatic redox components of ascorbate–glutathione (Asc–GSH) cycle, which play a significant role in scavenging cellular ROS, were examined in the presence of mitochondrial inhibitors. Both AA and SHAM caused marked reduction in photosynthetic carbon assimilation with concomitant rise in total cellular ROS. Restriction of electron transport through COX or AOX pathway had differential effect on ROS generating (SOD), ROS scavenging (CAT and APX) and antioxidant (Asc and GSH) regenerating (MDAR and GR) enzymes. Further, restriction of mitochondrial electron transport decreased redox ratios of both Asc and GSH. However, while decrease in redox ratio of Asc was more prominent in the presence of SHAM in light compared with dark, decrease in redox ratio of GSH was similar in both dark and light. These results suggest that the maintenance of cellular ROS at optimal levels is a prerequisite to sustain high photosynthetic rates which in turn is regulated by respiratory capacities of COX and AOX pathways.  相似文献   

4.
5.
6.
Perturbation of mitochondrial function causes altered nuclear gene expression in plants. To study this response, called mitochondrial retrograde regulation, and developmental gene expression, a transgenic Arabidopsis thaliana (Col-0) line containing a firefly luciferase gene controlled by a promoter region of the Arabidopsis alternative oxidase 1a gene (AtAOX1a) was created. The transgene and the endogenous gene were developmentally induced in young cotyledons to a level higher than in older cotyledons and leaves. Analysis of transgene expression suggests that this is true for emerging leaves as well. Antimycin A (AA), a mitochondrial electron transport chain inhibitor, and monofluroacetate (MFA), a TCA cycle inhibitor, induced expression of the transgene and the endogenous gene in parallel. The following comparative responses of the transgene to inhibitors were observed: (a) the response in cotyledons to AA treatment differed greatly in magnitude from the response in leaves; (b) the induction kinetics in cotyledons following MFA treatment differed greatly from the kinetics in leaves; and (c) the induction kinetics following MFA treatment differed from the kinetics of AA in both leaves and cotyledons. The transgenic line was used in a genetic screen to isolate mutants with greatly decreased transgene and AtAOX1a induction in response to AA. Some of these mutant lines showed greatly decreased induction by MFA, but one did not. Taken altogether, the data provide genetic evidence that suggests that induction of the AtAOX1a gene by distinct mitochondrial perturbations are via distinct, but overlapping signaling pathways that are tissue specific.  相似文献   

7.
8.
9.
10.
The Kok effect refers to the progressive light-induced inhibition of dark respiration at low light intensities, which saturates around the light compensation point. This appears as a sudden break around the light compensation point in the plot of photosynthesis versus light intensity. The magnitude of the break can be considered as a measure of the Kok effect. In the present work, the importance of different components of dark respiration during the Kok effect was investigated by using low concentrations of mitochondrial inhibitors in leaf discs of pea ( Pisum sativum L. cv. Azad P1). The effects of glucose (stimulates respiration) and 0.8 M sorbitol (imposes osmotic stress and inhibits photosynthesis) were also studied for comparison. The magnitude of the break decreased significantly in the presence of antimycin A or oligomycin (inhibitors of cytochrome pathway of mitochondrial electron transport and ATP synthase, respectively). In contrast, there was no significant change with salicylhydroxamic acid (SHAM; an inhibitor of alternative pathway of mitochondrial electron transport). The magnitude of the break increased significantly with glucose, and decreased on exposure to osmotic stress. Our results suggest that the Kok effect (inhibition of dark respiration in light) is modulated by inhibitors of cytochrome pathway and ATP synthesis, but not that of the alternative pathway.  相似文献   

11.
12.
13.
The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Qi‐site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Qo‐site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate‐grown wild‐type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium‐grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate‐grown plants. Hence the ETC, likely the Q‐cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non‐energy‐conserving electron sink upstream of Complex III.  相似文献   

14.
Calpains, Ca2+-activated cysteine proteases, are cytosolic enzymes implicated in numerous cellular functions and pathologies. We identified a mitochondrial Ca2+-inducible protease that hydrolyzed a calpain substrate (SLLVY-AMC) and was inhibited by active site-directed calpain inhibitors as calpain 10, an atypical calpain lacking domain IV. Immunoblot analysis and activity assays revealed calpain 10 in the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix fractions. Mitochondrial staining was observed when COOH-terminal green fluorescent protein-tagged calpain 10 was overexpressed in NIH-3T3 cells and the mitochondrial targeting sequence was localized to the NH2-terminal 15 amino acids. Overexpression of mitochondrial calpain 10 resulted in mitochondrial swelling and autophagy that was blocked by the mitochondrial permeability transition (MPT) inhibitor cyclosporine A. With the use of isolated mitochondria, Ca2+-induced MPT was partially decreased by calpain inhibitors. More importantly, Ca2+-induced inhibition of Complex I of the electron transport chain was blocked by calpain inhibitors and two Complex I proteins were identified as targets of mitochondrial calpain 10, NDUFV2, and ND6. In conclusion, calpain 10 is the first reported mitochondrially targeted calpain and is a mediator of mitochondrial dysfunction through the cleavage of Complex I subunits and activation of MPT. protease; respiration  相似文献   

15.
Helminthosporium maydis race T (HMT) toxin caused a reduction in the steady-state ATP levels when leaf mesophyll protoplasts isolated from maize containing Texas male-sterile (T) but not male-fertile (N) cytoplasm were incubated in the dark. At a toxin concentration 10 times the mean effectived dose for inhibition of root growth, the ATP levels began to fall in 30 to 90 seconds, fell by 50% in about 4 minutes, and reached 23% of the original levels in 100 minutes. This is faster than any previously observed response of whole cells or tissues to HMT toxin. In protoplasts incubated in the light, ATP levels were 25% higher than in the dark and were either unaffected or only slightly diminished by toxin. 3-(3,4-Dichlorophenyl)-1, 1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport, overcame the effect of light on both toxin-treated and control protoplasts. Oligomycin, an inhibitor of mitochondrial ATP synthesis, mimicked the effects of toxin in the dark, in the light, and in the light plus DCMU, but it was not specific for T cytoplasm. During the first 24 hours of culture, ATP levels in control protoplasts increased in both the light and dark. In the dark, ATP was not detectable after 24-hour incubation in the presence of toxin, whereas in the light a substantial amount of ATP remained. Our results are compatible with the hypothesis that mitochondria in vivo are inhibited by HMT toxin. Other responses of cells and tissues to toxin can be explained in terms of reduced ATP levels.  相似文献   

16.
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.  相似文献   

17.
A blue-light photoreceptor in plants, phototropin, mediates phototropism, chloroplast relocation, stomatal opening, and leaf-flattening responses. Phototropin is divided into two functional moieties, the N-terminal photosensory and the C-terminal signaling moieties. Phototropin perceives light stimuli by the light, oxygen or voltage (LOV) domain in the N-terminus; the signal is then transduced intramolecularly to the C-terminal kinase domain. Two phototropins, phot1 and phot2, which have overlapping and distinct functions, exist in Arabidopsis thaliana. Phot1 mediates responses with higher sensitivity than phot2. Phot2 mediates specific responses, such as the chloroplast avoidance response and chloroplast dark positioning. To elucidate the molecular basis for the functional specificities of phot1 and phot2, we exchanged the N- and C-terminal moieties of phot1 and phot2, fused them to GFP and expressed them under the PHOT2 promoter in the phot1 phot2 mutant background. With respect to phototropism and other responses, the chimeric phototropin consisting of phot1 N-terminal and phot2 C-terminal moieties (P1n/2cG) was almost as sensitive as phot1; whereas the reverse combination (P2n/1cG) functioned with lower sensitivity. Hence, the N-terminal moiety mainly determined the sensitivity of the phototropins. Unexpectedly, both P1n/2cG and P2n/1cG mediated the chloroplast avoidance response, which is specific to phot2. Hence, chloroplast avoidance activity appeared to be suppressed specifically in the combination of N- and C-terminal moieties of phot1. Unlike the chloroplast avoidance response, chloroplast dark positioning was observed for P2G and P2n/1cG but not for P1G or P1n/2cG, suggesting that a specific structure in the N-terminal moiety of phot2 is required for this activity.  相似文献   

18.
Alexander A. Bulychev 《BBA》1984,766(3):647-652
The effects of varying dark interval on the kinetics of light-induced formation of the membrane potential were studied on individual chloroplasts of Anthoceros with the use of capillary microelectrodes. Illumination of the chloroplast with 1 s light pulse after 3 min dark period induced the photoelectrical response with two peaks of the potential that were located at 20 and 500 ms after the onset of illumination. The position of the second peak was shifted along the time-scale depending on the preceding dark interval. The repeated illumination of the chloroplast with 1 s light pulse after 30 s dark interval induced the electrical response with only one maximum and a monotonous decay of the potential in the light. Distinctions in the electrical responses induced by the first and the second light pulses were eliminated by the addition of 50 μM dicyclohexylcarbodiimide (DCCD). The results show that the photoinduction kinetics of the membrane potential in chloroplasts is affected by functioning of H+-ATPase. The delayed peak of the membrane potential in the photoinduction kinetics is interpreted as a consequence of the photoactivated electron transport supported by Photosystem I.  相似文献   

19.
20.
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light–dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox‐sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle‐specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark‐dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re‐oxidation was observed upon re‐illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light–dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light‐dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号