首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe one of the first examples of reciprocal phenotypic plasticity in a predator–prey system: the interaction between an inducible defence and an inducible offence. When confronted with the predatory ciliate Lembadion bullinum, the hypotrichous ciliate Euplotes octocarinatus develops protective lateral wings, which inhibit ingestion by the predator. We show that L. bullinum reacts to this inducible defence by expressing an inducible offence – a plastic increase in cell size and gape size. This counteraction reduced the effect of the defence, but did not completely neutralize it. Therefore, the defence remained beneficial for E. octocarinatus. From L. bullinum's point of view, the increase in feeding rate because of the offence was not larger than the increase in mean cell volume and apparently, did not increase the predator's fitness. Therefore, the inducible offence of L. bullinum does not seem to be an effective counter‐adaptation to the inducible defence of E. octocarinatus.  相似文献   

2.
Ecoevolutionary feedbacks in predator–prey systems have been shown to qualitatively alter predator–prey dynamics. As a striking example, defense–offense coevolution can reverse predator–prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼‐phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾‐lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator–prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small‐amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems.  相似文献   

3.
Although theoretical models have demonstrated that predator–prey population dynamics can depend critically on age (stage) structure and the duration and variability in development times of different life stages, experimental support for this theory is non‐existent. We conducted an experiment with a host–parasitoid system to test the prediction that increased variability in the development time of the vulnerable host stage can promote interaction stability. Host–parasitoid microcosms were subjected to two treatments: Normal and High variance in the duration of the vulnerable host stage. In control and Normal‐variance microcosms, hosts and parasitoids exhibited distinct population cycles. In contrast, insect abundances were 18–24% less variable in High‐ than Normal‐variance microcosms. More significantly, periodicity in host–parasitoid population dynamics disappeared in the High‐variance microcosms. Simulation models confirmed that stability in High‐variance microcosms was sufficient to prevent extinction. We conclude that developmental variability is critical to predator–prey population dynamics and could be exploited in pest‐management programs.  相似文献   

4.
Analysing the structure and dynamics of biotic interaction networks and the processes shaping them is currently one of the key fields in ecology. In this paper, we develop a novel approach to gut content analysis, thereby deriving a new perspective on community interactions and their responses to environment. For this, we use an elevational gradient in the High Arctic, asking how the environment and species traits interact in shaping predator–prey interactions involving the wolf spider Pardosa glacialis. To characterize the community of potential prey available to this predator, we used pitfall trapping and vacuum sampling. To characterize the prey actually consumed, we applied molecular gut content analysis. Using joint species distribution models, we found elevation and vegetation mass to explain the most variance in the composition of the prey community locally available. However, such environmental variables had only a small effect on the prey community found in the spider's gut. These observations indicate that Pardosa exerts selective feeding on particular taxa irrespective of environmental constraints. By directly modelling the probability of predation based on gut content data, we found that neither trait matching in terms of predator and prey body size nor phylogenetic or environmental constraints modified interaction probability. Our results indicate that taxonomic identity may be more important for predator–prey interactions than environmental constraints or prey traits. The impact of environmental change on predator–prey interactions thus appears to be indirect and mediated by its imprint on the community of available prey.  相似文献   

5.
Warming could strongly stabilize or destabilize populations and food webs by changing the interaction strengths between predators and their prey. Predicting the consequences of warming requires understanding how temperature affects ingestion (energy gain) and metabolism (energy loss). Here, we studied the temperature dependence of metabolism and ingestion in laboratory experiments with terrestrial arthropods (beetles and spiders). From this data, we calculated ingestion efficiencies (ingestion/metabolism) and per capita interaction strengths in the short and long term. Additionally, we investigated if and how body mass changes these temperature dependencies. For both predator groups, warming increased metabolic rates substantially, whereas temperature effects on ingestion rates were weak. Accordingly, the ingestion efficiency (the ratio of ingestion to metabolism) decreased in all treatments. This result has two possible consequences: on the one hand, it suggests that warming of natural ecosystems could increase intrinsic population stability, meaning less fluctuations in population density; on the other hand, decreasing ingestion efficiencies may also lead to higher extinction risks because of starvation. Additionally, predicted long‐term per capita interaction strengths decreased with warming, which suggests an increase in perturbation stability of populations, i.e., a higher probability of returning to the same equilibrium density after a small perturbation. Together, these results suggest that warming has complex and potentially profound effects on predator–prey interactions and food‐web stability.  相似文献   

6.
Size structure of organisms at logarithmic scale (i.e. size spectrum) can often be described by a linear function with a negative slope; however, substantial deviations from linearity have often been found in natural systems. Theoretical studies suggest that greater nonlinearity in community size spectrum is associated with high predator–prey size ratios but low predator–prey abundance ratios; however, empirical evaluation of the effects of predator–prey interactions on nonlinear structures remains scarce. Here, we aim to empirically explore the pattern of the size‐specific residuals (i.e. deviations from the linear regression between the logarithmic fish abundance and the logarithmic mean fish size) by using size spectra of fish communities in 74 German lakes. We found that nonlinearity was strong in lakes with high predator–prey abundance ratios but at low predator–prey size ratios. More specifically, our results suggest that only large predators, even if occurring in low abundances, can control the density of prey fishes in a broad range of size classes in a community and thus promote linearity in the size spectrum. In turn, the lack of large predator fishes may cause high abundances of fish in intermediate size classes, resulting in nonlinear size spectra in these lakes. Moreover, these lakes were characterized by a more intense human use including high fishing pressure and high total phosphorus concentrations, which have negative impacts on the abundance of large, predatory fish. Our findings indicate that nonlinear size spectra may reflect dynamical processes potentially caused by predator–prey interactions. This opens a new perspective in the research on size spectrum, and can be relevant to further quantify the efficiency of energy transfer in aquatic food webs.  相似文献   

7.
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time‐varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time‐varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator‐susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi‐trophic systems.  相似文献   

8.
Explaining the coexistence and distribution of species in time and space remains a fundamental challenge. While species coexistence depends on both local and regional mechanisms, it is sometimes unclear which role each mechanism takes in a given ecosystem. Consequently, it is very hard to predict the response of the ecosystem to environmental changes. Here, we develop a model to study spatial patterns of coexistence, focusing on predator–prey and host–parasite populations. We show, both theoretically and empirically, that these systems may exhibit both local and regional patterns and mechanisms of coexistence. Changes in environmental parameters, such as spatial connectivity, may lead to a transition from regional to local coexistence or it may lead directly to extinction, depending on demographic parameters. This demonstrates the importance of simultaneously analysing interacting mechanisms that act at different spatial scales to understand the response of ecosystems to environmental changes.  相似文献   

9.
Asymmetries in responses to climate change have the potential to alter important predator–prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968–2014) and with a doubling in CO2. Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator–prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species’ range it occupied and caused a potential reduction in its ability to exert top‐down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience.  相似文献   

10.
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming.  相似文献   

11.
We theoretically explore consequences of warming for predator–prey dynamics, broadening previous approaches in three ways: we include beyond‐optimal temperatures, predators may have a type III functional response, and prey carrying capacity depends on explicitly modelled resources. Several robust patterns arise. The relationship between prey carrying capacity and temperature can range from near‐independence to monotonically declining/increasing to hump‐shaped. Predators persist in a U‐shaped region in resource supply (=enrichment)‐temperature space. Type II responses yield stable persistence in a U‐shaped band inside this region, giving way to limit cycles with enrichment at all temperatures. In contrast, type III responses convey stability at intermediate temperatures and confine cycles to low and high temperatures. Warming‐induced state shifts can be predicted from system trajectories crossing stability and persistence boundaries in enrichment‐temperature space. Results of earlier studies with more restricted assumptions map onto this graph as special cases. Our approach thus provides a unifying framework for understanding warming effects on trophic dynamics.  相似文献   

12.
Quantitative approaches to predator–prey interactions are central to understanding the structure of food webs and their dynamics. Different predatory strategies may influence the occurrence and strength of trophic interactions likely affecting the rates and magnitudes of energy and nutrient transfer between trophic levels and stoichiometry of predator–prey interactions. Here, we used spider–prey interactions as a model system to investigate whether different spider web architectures—orb, tangle, and sheet‐tangle—affect the composition and diet breadth of spiders and whether these, in turn, influence stoichiometric relationships between spiders and their prey. Our results showed that web architecture partially affects the richness and composition of the prey captured by spiders. Tangle‐web spiders were specialists, capturing a restricted subset of the prey community (primarily Diptera), whereas orb and sheet‐tangle web spiders were generalists, capturing a broader range of prey types. We also observed elemental imbalances between spiders and their prey. In general, spiders had higher requirements for both nitrogen (N) and phosphorus (P) than those provided by their prey even after accounting for prey biomass. Larger P imbalances for tangle‐web spiders than for orb and sheet‐tangle web spiders suggest that trophic specialization may impose strong elemental constraints for these predators unless they display behavioral or physiological mechanisms to cope with nutrient limitation. Our findings suggest that integrating quantitative analysis of species interactions with elemental stoichiometry can help to better understand the occurrence of stoichiometric imbalances in predator–prey interactions.  相似文献   

13.
14.
Plant defence often varies by orders of magnitude as plants develop from the seedling to juvenile to mature and senescent stages. Ontogenetic trajectories can involve switches among defence traits, leading to complex shifting phenotypes across plant lifetimes. While considerable research has characterised ontogenetic trajectories for now hundreds of plant species, we still lack a clear understanding of the molecular, ecological and evolutionary factors driving these patterns. In this study, we identify several non‐mutually exclusive factors that may have led to the evolution of ontogenetic trajectories in plant defence, including developmental constraints, resource allocation costs, multi‐functionality of defence traits, and herbivore selection pressure. Evidence from recent physiological studies is highlighted to shed light on the underlying molecular mechanisms involved in the regulation and activation of these developmental changes. Overall, our goal is to promote new research avenues that would provide evidence for the factors that have promoted the evolution of this complex lifetime phenotype. Future research focusing on the questions and approaches identified here will advance the field and shed light on why defence traits shift so dramatically across plant ontogeny, a widespread but poorly understood ecological pattern.  相似文献   

15.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

16.
Abrams 《Ecology letters》2001,4(2):166-175
In recent years, three related methods have been used to model the phenotypic dynamics of traits under the influence of natural selection. The first is based on an approximation to quantitative genetic recursion equations for sexual populations. The second is based on evolution in asexual lineages with mutation-generated variation. The third method finds an evolutionarily stable set of phenotypes for species characterized by a given set of fitness functions, assuming that the mode of reproduction places no constraints on the number of distinct types that can be maintained in the population. The three methods share the property that the rate of change of a trait within a homogeneous population is approximately proportional to the individual fitness gradient. The methods differ in assumptions about the potential magnitude of phenotypic differences in mutant forms, and in their assumptions about the probability that invasion or speciation occurs when a species has a stable, yet invadable phenotype. Determining the range of applicability of the different methods is important for assessing the validity of optimization methods in predicting the evolutionary outcome of ecological interactions. Methods based on quantitative genetic models predict that fitness minimizing traits will often be evolutionarily stable over significant time periods, while other approaches suggest this is likely to be rare. A more detailed study of cases of disruptive selection might reveal whether fitness-minimizing traits occur frequently in natural communities.  相似文献   

17.
18.
19.
The developmental origin of phenotypic plasticity in morphological shape can be attributed to environment-specific changes in growth of overall body size, localized growth of a morphological structure or a combination of both. I monitored morphological development in the first four nymphal instars of grasshoppers (Melanoplus femurrubrum) raised on two different plant diets to determine the ontogenetic origins of diet-induced phenotypic plasticity and to quantify genetic variation for phenotypic plasticity. I measured diet-induced phenotypic plasticity in body size (tibia length), head size (articular width and mandible depth) and head shape (residual articular width and residual mandible depth) for grasshoppers from 37 full-sib families raised on either a hard plant diet (Lolium perenne) or a soft plant diet (Trifolium repens). By the second to third nymphal instar, grasshoppers raised on a hard plant diet had significantly smaller mean tibia length and greater mean residual articular width (distance between mandibles adjusted for body size) compared with full-sibs raised on a soft plant diet. However, there was no significant phenotypic plasticity in mean unadjusted articular width and mandible depth, and in mean residual mandible depth. At the population level, development of diet-induced phenotypic plasticity in grasshopper head shape is mediated by plastic changes in allocation to tissue growth that maintain growth of head size on hard, low-nutrient diets while reducing growth of body size. Within the population, there was substantial variation in the plasticity of growth trajectories since different full-sib families developed phenotypic plasticity of residual articular width through different combinations of head and body size growth. Genetic variation for diet-induced phenotypic plasticity of residual articular width, residual mandible depth and tibia length, as estimated by genotype–environment interaction, exhibited significant fluctuation through ontogeny (repeated measures MANOVA , family × plant × instar, P < 0.01). For example, there was significant genetic variation for phenotypic plasticity of residual articular width in the third nymphal instar, but not earlier or later in ontogeny. The observed patterns of genetic variation are discussed with reference to short-term constraints and the evolution of phenotypic plasticity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号