首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The high-affinity transport systems in Arabidopsis thaliana (L.) Heynh. involve potentially seven genes. Among these, the AtNRT2.1 and/or AtNRT2.2 genes have been shown to play a major role in the inducible component of this transport system. The physiological impact of a disruption of AtNRT2.1 and AtNRT2.2 on plant growth and N-metabolism was investigated. The reduced nitrate uptake in the mutant under a limiting N-regime was found to correlate with a significant difference in shoot/root ratio between wild type and mutant and a drastically reduced nitrate level in the shoot of the mutant. Carbohydrate analyses of plants under a low nitrate supply revealed a slight increase in glucose and fructose in the mutant shoots as well as an increase in sucrose and starch contents in mutant shoots. Interestingly, the AtNRT2.4 and AtNRT2.5 genes were over-expressed in the mutant growing in reduced N-conditions, without any compensation by root nitrate influx. These results are discussed in the context of the putative role of the different NRT2 genes.Abbreviations DW Dry weight - FW Fresh weight - HATS High-affinity transport system - LATS Low-affinity transport system - NRT Nitrate transporter - WT Wild type  相似文献   

3.
The high affinity nitrate transport system in Arabidopsis thaliana involves one gene and potentially seven genes from the NRT1 and NRT2 family, respectively. Among them, NRT2.1, NRT2.2, NRT2.4 and NRT2.7 proteins have been shown to transport nitrate and are localized on the plasmalemma or the tonoplast membranes. NRT2.1, NRT2.2 and NRT2.4 play a role in nitrate uptake from soil solution by root cells while NRT2.7 is responsible for nitrate loading in the seed vacuole. We have undertaken the functional characterization of a third member of the family, the NRT2.6 gene. NRT2.6 was weakly expressed in most plant organs and its expression was higher in vegetative organs than in reproductive organs. Contrary to other NRT2 members, NRT2.6 expression was not induced by limiting but rather by high nitrogen levels, and no nitrate-related phenotype was found in the nrt2.6-1 mutant. Consistently, the over-expression of the gene failed to complement the nitrate uptake defect of an nrt2.1-nrt2.2 double mutant. The NRT2.6 expression is induced after inoculation of Arabidopsis thaliana by the phytopathogenic bacterium Erwinia amylovora. Interestingly, plants with a decreased NRT2.6 expression showed a lower tolerance to pathogen attack. A correlation was found between NRT2.6 expression and ROS species accumulation in response to infection by E. amylovora and treatment with the redox-active herbicide methyl viologen, suggesting a probable link between NRT2.6 activity and the production of ROS in response to biotic and abiotic stress.  相似文献   

4.
Nitrate transporters are important for nitrogen acquisition by plants and in algae some require two gene products, NRT2 and NAR2, for function. The NRT2 family was already described and the recent identification of a family of the NAR2-type genes in higher plants showed that there was a homologue in Arabidopsis, AtNAR2.1. Using heterologous expression in yeast and oocytes we showed that the two Arabidopsis AtNRT2.1 and AtNAR2.1 proteins interacted to give a functional high affinity nitrate transport system (HATS). The gene knock out mutant atnar2.1-1 is deficient specifically for HATS activity and the resulting growth phenotype on low nitrate concentration is more severe than for the atnrt2.1-1 knock out mutant. Physiological characterisation of the plant N status and gene expression revealed a pattern that was characteristic of severe nitrogen deficiency. Consistent with the down regulation of AtNRT2.1 expression, the atnar2.1-1 plants also displayed the same phenotype as atnrt2.1 mutants in lateral root (LR) response to low nitrate supply. Using atnar2.1-1 plants constitutively expressing the NpNRT2.1 gene, we now show a specific role for AtNAR2.1 in LR response to low nitrate supply. AtNAR2.1 is also involved in the repression of LR initiation in response to high ratios of sucrose to nitrogen in the medium. Therefore the two component system itself is likely to be involved in the signaling pathway integrating nutritional cues for LR architecture regulation. Using a green fluorescent protein-NRT2.1 protein fusion we show the essential role of AtNAR2.1 for the presence of AtNRT2.1 to the plasma membrane.Key Words: high affinity nitrate transport, nitrate transporter, nitrate signalling, root growth  相似文献   

5.
6.
Nitrate is a major nitrogen (N) source for most crops. Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels. Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency. The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots. Wheat seedlings grown in nutrient solution containing 2 mmol/L nitrate as the only nitrogen source for 2weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h. Treated wheat plants were then divided into two groups. One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L ^15N-labeled nitrate. The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate. Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction. When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced. These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media. Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.  相似文献   

7.
8.
AtNRT2.1, a polypeptide of the Arabidopsis thaliana two‐component inducible high‐affinity nitrate transport system (IHATS), is located within the plasma membrane. The monomeric form of AtNRT2.1 has been reported to be the most abundant form, and was suggested to be the form that is active in nitrate transport. Here we have used immunological and transient protoplast expression methods to demonstrate that an intact two‐component complex of AtNRT2.1 and AtNAR2.1 (AtNRT3.1) is localized in the plasma membrane. A. thaliana mutants lacking AtNAR2.1 have virtually no IHATS capacity and exhibit extremely poor growth on low nitrate as the sole source of nitrogen. Near‐normal growth and nitrate transport in the mutant were restored by transformation with myc‐tagged AtNAR2.1 cDNA. Membrane fractions from roots of the restored myc‐tagged line were solubilized in 1.5% dodecyl‐β‐maltoside and partially purified in the first dimension by blue native gel electrophoresis. Using anti‐NRT2.1 antibodies, an oligomeric polypeptide (approximate molecular mass 150 kDa) was identified, but monomeric AtNRT2.1 was absent. This oligomer was also observed in the wild‐type, and was resolved, using SDS–PAGE for the second dimension, into two polypeptides with molecular masses of approximately 48 and 26 kDa, corresponding to AtNRT2.1 and myc‐tagged AtNAR2.1, respectively. This result, together with the finding that the oligomer is absent from NRT2.1 or NAR2.1 mutants, suggests that this complex, rather than monomeric AtNRT2.1, is the form that is active in IHATS nitrate transport. The molecular mass of the intact oligomer suggests that the functional unit for high‐affinity nitrate influx may be a tetramer consisting of two subunits each of AtNRT2.1 and AtNAR2.1.  相似文献   

9.
Two component high affinity nitrate transport system, NAR2/NRT2, has been defined in several plant species. In Arabidopsis, AtNAR2.1 has a role in the targeting of AtNRT2.1 to the plasma membrane. The gene knock out mutant atnar2.1 lacks inducible high-affinity transport system (IHATS) activity, it also shows the same inhibition of lateral root (LR) initiation on the newly developed primary roots as the atnrt2.1 mutant in response to low nitrate supply. In rice, OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a to provide nitrate uptake over high and low concentration ranges. In rice roots OsNAR2.1 and its partner NRT2s show some expression differences in both tissue specificity and abundance. It can be predicted that NAR2 plays multiple roles in addition to being an IHATS component in plants.Key words: NAR2, NRT2, nitrate transporter, root  相似文献   

10.
11.
12.
Nitrate transporters received little attention to legumes probably because these species are able to adapt to N starvation by developing biological N2 fixation. Still it is important to study nitrate transport systems in legumes because nitrate intervenes as a signal in regulation of nodulation probably through nitrate transporters. The aim of this work is to achieve a molecular characterization of nitrate transporter 2 (NRT2) and NAR2 (NRT3) families to allow further work that would unravel their involvement in nitrate transport and signaling. Browsing the latest version of the Medicago truncatula genome annotation (v4 version) revealed three putative NRT2 members that we have named MtNRT2.1 (Medtr4g057890.1), MtNRT2.2 (Medtr4g057865.1) and MtNRT2.3 (Medtr8g069775.1) and two putative NAR2 members we named MtNAR2.1 (Medtr4g104730.1) and MtNAR2.2 (Medtr4g104700.1). The regulation and the spatial expression profiles of MtNRT2.1, the coincidence of its expression with that of MtNAR2.1 and MtNAR2.2 and the size of the encoded protein with 12 transmembrane (TM) spanning regions strongly support the idea that MtNRT2.1 is a nitrate transporter with a major contribution to the high‐affinity transport system (HATS), while a very low level of expression characterized MtNRT2.2. Unlike MtNRT2.1, MtNRT2.3 showed a lower level of expression in the root system but was expressed in the shoots and in the nodules thus suggesting an involvement of the encoded protein in nitrate transport inside the plant and/or in nitrate signaling pathways controlling post‐inoculation processes that govern nodule functioning.  相似文献   

13.
14.
15.
The identification of a family of NAR2-type genes in higher plants showed that there was a homolog in Arabidopsis (Arabidopsis thaliana), AtNAR2.1. These genes encode part of a two-component nitrate high-affinity transport system (HATS). As the Arabidopsis NRT2 gene family of nitrate transporters has been characterized, we tested the idea that AtNAR2.1 and AtNRT2.1 are partners in a two-component HATS. Results using the yeast split-ubiquitin system and Xenopus oocyte expression showed that the two proteins interacted to give a functional HATS. The growth and nitrogen (N) physiology of two Arabidopsis gene knockout mutants, atnrt2.1-1 and atnar2.1-1, one for each partner protein, were compared. Both types of plants had lost HATS activity at 0.2 mm nitrate, but the effect was more severe in atnar2.1-1 plants. The relationship between plant N status and nitrate transporter expression revealed a pattern that was characteristic of N deficiency that was again stronger in atnar2.1-1. Plants resulting from a cross between both mutants (atnrt2.1-1 x atnar2.1-1) showed a phenotype like that of the atnar2.1-1 mutant when grown in 0.5 mm nitrate. Lateral root assays also revealed growth differences between the two mutants, confirming that atnar2.1-1 had a stronger phenotype. To show that the impaired HATS did not result from the decreased expression of AtNRT2.1, we tested if constitutive root expression of a tobacco (Nicotiana plumbaginifolia) gene, NpNRT2.1, previously been shown to complement atnrt2.1-1, can restore HATS to the atnar2.1-1 mutant. These plants did not recover wild-type nitrate HATS. Taken together, these results show that AtNAR2.1 is essential for HATS of nitrate in Arabidopsis.  相似文献   

16.
17.
18.
In plants, the amino acid asparagine serves as an important nitrogen transport compound whose levels are dramatically regulated by light in many plant species, including Arabidopsis thaliana . To elucidate the mechanisms regulating the flux of assimilated nitrogen into asparagine, we examined the regulation of the gene family for asparagine synthetase in Arabidopsis. In addition to the previously identified ASN1 gene, we identified a novel class of asparagine synthetase genes in Arabidopsis ( ASN2 and ASN3 ) by functional complementation of a yeast asparagine auxotroph. The proteins encoded by the ASN2/3 cDNAs contain a Pur-F type glutamine-binding triad suggesting that they, like ASN1 , encode glutamine-dependent asparagine synthetase isoenzymes. However, the ASN2/3 isoenyzmes form a novel dendritic group with monocot AS genes which is distinct from all other dicot AS genes including Arabidopsis ASN1 . In addition to these distinctions in sequence, the ASN1 and ASN2 genes are reciprocally regulated by light and metabolites. Time-course experiments reveal that light induces levels of ASN2 mRNA while it represses levels of ASN1 mRNA in a kinetically reciprocal fashion. Moreover, the levels of ASN2 and ASN1 mRNA are also reciprocally regulated by carbon and nitrogen metabolites. The distinct regulation of ASN1 and ASN2 genes combined with their distinct encoded isoenzymes suggest that they may play different roles in nitrogen metabolism, as discussed in this paper.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号