首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native forest, and in the exotic forest the abundance of both Azorean endemics and SIEs decreased with increasing distance from the native forest. There is a gradient of decreasing arthropod richness and abundance from the native forest to the intensive pasture. Although this study demonstrates the important role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.  相似文献   

2.
海南岛霸王岭两种典型热带季雨林群落特征   总被引:7,自引:0,他引:7  
刘万德  臧润国  丁易 《生态学报》2009,29(7):3465-3476
热带季雨林为海南岛的隐域性植被类型,分布在与热带低地雨林相似的海拔范围但生境条件较差的局部地段,在旱季其大部分的乔木种类和个体都会落叶.海南岛霸王岭林区分布着海南岛最为典型且大都保存较为完好的热带季雨林原始林,按照其优势树种可划分为海南榄仁(Terminalia hainanensis)季雨林和枫香(Liquidambar formosana)季雨林两种群落类型.通过对霸王岭林区两种典型的热带季雨林老龄林群落的样地调查,比较分析了其物种组成、大小结构、多样性、季相变化等特征.结果表明:海南岛热带季雨林群落中物种优势度明显,具有明显的标志种--海南榄仁和枫香.海南榄仁群落具有较高的灌木物种丰富度、个体多度及较低的乔木物种丰富度、个体多度和多样性;海南榄仁群落在小径级和低高度级中具有较高的植物个体多度,同时在低高度级中具有较低的物种丰富度,但其它径级和高度级两个群落物种丰富度及个体多度差异均不显著;除灌木落叶物种丰富度海南榄仁群落显著高于枫香群落外,其余各生长型落叶物种丰富度及个体多度两个群落之间均无显著差异;在具刺木质藤本物种丰富度和个体多度上海南榄仁群落与枫香群落差异不显著,但乔木、灌木和木本植物具刺物种丰富度及个体多度海南榄仁群落均显著高于枫香群落.总体来看,海南榄仁群落比枫香群落的季雨林特征明显,是海南岛最为典型的季雨林群落类型.  相似文献   

3.
Plant-frugivore networks play a key role in the regeneration of sub-tropical forest ecosystems. However, information about the impact of habitat characteristics on plant-frugivore networks in fragmented forests is scarce. We investigated the importance of fruit abundance, fruiting plant species richness and canopy cover within habitat fragments for the structure and robustness of plant-frugivore networks in a mosaic forest landscape of South Africa. In total, 53 avian species were involved in fruit removal of 31 fleshy-fruiting plant species. Species specialisation was always higher for plants than for frugivores. Both species and network-level specialisation increased with increasing fruit abundance and decreased with increasing fruiting plant species richness and canopy cover within fragments. Interaction diversity was unaffected by fruit abundance and canopy cover, but increased slightly with increasing fruiting plant species richness. These findings suggest that especially the availability of resources is an important determinant of the structure of plant-frugivore networks in a fragmented forest landscape.  相似文献   

4.
Habitat heterogeneity can be the major factor affecting species diversity in a community and measuring bee and wasp community habitat preferences in natural systems may provide insights for biodiversity management and conservation. In the present study, we investigate the effects of habitat structure components on solitary bee and wasp species richness and abundance. The research was conducted in an urban forest remnant in southeast Brazil. Our main questions were: (1) is similarity in habitat structure mirrored by similarity in Aculeate assemblage composition? and (2) what are the vegetation features that could be used as predictors of solitary bee and wasp richness and abundance? Aculeate bees and wasps were sampled using trap nests from February to November 2004. Trap nests were placed in sampling units located in 6 ha of secondary mesophytic forest. One hundred and thirty-seven trap nests were occupied by four species of wasps and seven species of bees. Altogether, our sampling units had a mean capture rate (relative to expected richness) of 72% during all the study period. The more similar sampling units were in terms of vegetation structure, the more similar they were in solitary bee and wasp species composition. The variance of tree abundance, shrub height and the abundance of wood logs were good predictors of solitary bee and wasp species richness and abundance in the study area. We demonstrate that even in a small scale it is possible to detect significant influences of habitat features on alpha diversity and that some of them are effective as predictors of trap-nesting Hymenoptera richness and abundance.  相似文献   

5.
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September–October) and rainy (March–April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.  相似文献   

6.
To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1 —β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.  相似文献   

7.
Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.  相似文献   

8.
Most insects' assemblages differ with forest type and show vertical stratification. We tested for differences in richness, abundance and composition of hymenopteran families and mymarid genera between sugar maple (Acer saccharum) and white pine (Pinus strobus) stands and between canopy and understory in northeastern temperate forests in Canada. We used flight interception traps (modified malaise traps) suspended in the canopy and the understory in a split-split block design, with forest type as the main factor, forest stratum as the first split factor, and collection bottle location as the second split factor. Hymenopteran families and mymarid genera differed in their diversity depending on forest type and stratum. Both family and genera richness were higher in maple than in pine forests, whereas family richness was higher in the canopy and top bottles and generic richness was higher in the understory and bottom bottles. Multivariate analysis separated samples by forest type, vegetation stratum, and bottle location. Family composition showed 77% similarity between forest types and 73% between the canopy and understory. At the lower taxa level, mymarid genera showed only 47% similarity between forest types and 40% between forest strata, indicating vertical stratification and relatively high beta-diversity. Our study suggests that hymenopteran diversity and composition is strongly dependent on forest type and structure, making flying members of this order particularly vulnerable to forest management practices. It also shows that insect assemblage composition (especially at low-taxon levels), rather than relative abundance and richness, is the community attribute most sensitive to forest type and vertical stratification.  相似文献   

9.
Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.  相似文献   

10.
Carabid beetle assemblages were studied to assess how diversity and community structure varied along a gradient of land-use. This gradient was composed of six 1 km2 quadrats with an increasing proportion of agricultural land reflecting the anthropogenic fragmentation and intensification of landscapes. Carabid species richness and abundance was predicted to peak in the most heterogeneous landscape, in accord with the intermediate disturbance hypothesis (IDH), and then decline as agricultural intensification increased. It was also predicted that the different landscapes would support beetle communities distinct from each other. The IDH was unsupported-in both years of this study carabid species richness and abundance was greatest in the most intensively managed, agricultural sites. Detrended correspondence analysis revealed a clear separation in beetle community structure between forested and open habitats and between different forest types. Canonical correspondence analysis revealed a significant correlation between beetle community structure and the environment, showing distinct beetle assemblages to be significantly associated with specific edaphic and botanical features of the land-use gradient. This study adds to increasing evidence that landscape-scale patterns in land-use significantly affect beetle community structure producing distinct assemblages.  相似文献   

11.
【目的】生境类型和环境因子对物种分布和维持具有重要的影响。本研究通过分析不同生境类型对蝴蝶群落多样性及其群落结构影响的差异,以及环境因子对蝴蝶物种丰富度和多度的影响,为区域变动尺度蝴蝶多样性维持机制的研究奠定基础。【方法】于2019年8月和10月,在西双版纳地区采用样线法,调查了天然林、次生林、复合生境、人工林和农田5种生境中蝴蝶的物种,分析了蝴蝶群落多样性、群落结构相似性及物种丰富度和多度与环境因子的关系。【结果】2019年从西双版纳共采集蝴蝶2 226头,隶属于11科98属175种,在西双版纳州级尺度上蝴蝶物种丰富度高于县域尺度。在西双版纳州级尺度上,蝴蝶的物种丰富度和多度在5种生境间存在显著差异,而在县域尺度上,物种丰富度、多度和Chao 1物种丰富度估计值没有一致性规律。群落结构相似性结果显示,在西双版纳州级尺度上,蝴蝶群落结构在不同生境类型间存在极显著差异,在县域尺度上,仅勐腊区域蝴蝶群落结构在不同生境类型间存在显著差异。蝴蝶物种丰富度和多度不仅受到生境类型的影响,还受到温度、年均降水和海拔的影响。【结论】本研究结果表明,在区域变动尺度上,生境类型对西双版纳蝴蝶的多样性的影响较大,而温度、年均降水和海拔是维持蝴蝶物种多样性的重要因素。这些发现对当前人类导致的生境丧失和气候变化时代生物多样性的保护具有重要意义。  相似文献   

12.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

13.
Oil palm (Elaies guineensis) plantations are among the fastest growing agroecosystems in the Neotropics, but little is known about how Neotropical birds use oil palm habitats. To better understand the potential value of oil palm as an overwintering habitat for migratory birds, we surveyed birds in oil palm and native forest remnants in Tabasco, Mexico, from 19 December 2017 to 27 March 2018. We collected data on bird abundance and vegetative structure and used generalized linear models and multivariate analysis to assess how oil palm development influenced migrant bird diversity, community assemblages, and abundance. We found that species richness of migratory birds tended to be higher in forest patches than in oil palm, that community assemblages of migratory birds differed between native forest and oil palm plantations, and that differences in migratory bird abundance, and subsequent changes in community assemblages were driven by differences between native forest and oil palm plantations in vegetative structure. The bird community of native forest was characterized by migrant species sensitive to forest loss that forage low in the understory and in the leaf litter, whereas the bird community of oil palm plantations was represented by generalist species that occupy a wider range of foraging niches. Our results suggest that most species of migrant birds responded positively to several forest structural features and that integrating more native trees and increasing the amount of understory vegetation in oil palm plantations may increase the value of working landscapes for migratory birds.  相似文献   

14.
The community structures of Mesostigmata, Prostigmata, and Oribatida in the soil of broad-leaved regeneration forests and conifer plantations of various ages were assessed alongside soil and plant environmental variables using three response metrics (density, species richness, and species–abundance distribution). The density and species richness of mites recovered swiftly after clear-cutting or replanting. Oribatid mites dominated the soil mite communities in terms of densities and species richness for both forest types. Soil mite communities in broad-leaved forests was related to forest age, the crown tree communities index, and forest-floor litter weight. In contrast, soil mite communities in the conifer plantation sites were related to various indices of understory plants. The development of the understory plants was synchronized with the silvicultural schedules, including a closed canopy and thinning. Such a conifer plantation management may affect indirectly the community of mites.  相似文献   

15.
Little is known about how tropical land-use systems contribute to the conservation of functionally important insect groups, including dung beetles. In a study at the margin of Lore Lindu National Park (a biodiversity hotspot in Central Sulawesi, Indonesia) dung-beetle communities were sampled in natural forest, young secondary forest, agroforestry systems (cacao plantations with shade trees) and annual cultures (maize fields), each with four replicates (n = 16 sites). At each site we used 10 pitfall traps, baited with cattle dung, along a 100 m transect for six 3-day periods. The number of trapped specimens and species richness at the natural forest sites was higher than in all land-use systems, which did not significantly differ. Each land-use system contained, on average, 75% of the species richness of the natural forest, thereby indicating their importance for conservation. However, a two-dimensional scaling plot based on NESS indices (m = 6) indicated distinct dung beetle communities for both forest types, while agroforestry systems and annual cultures exhibited a pronounced overlap. Mean body size of dung beetles was not significantly influenced by land-use intensity. Five of the six most abundant dung beetle species were recorded in all habitats, whereas the abundance of five other species was significantly related to habitat type. Mean local abundance and number of occupied sites were closely correlated, further indicating little habitat specialisation. The low dung beetle diversity (total of 18 recorded species) may be due to the absence of larger mammals in Sulawesi during historical times, even though Sulawesi is the largest island of Wallacea. In conclusion, the dung beetle fauna of the lower montane forest zone in Central Sulawesi appears to be relatively robust to man-made habitat changes and the majority of species did not exhibit strong habitat preferences.  相似文献   

16.
The riverine forests of the northern city of Edmonton, Alberta, Canada display strong resilience to disturbance and are similar in species composition to southern boreal mixedwood forest types. This study addressed questions such as, how easily do exotic species become established in urban boreal forests (species invasiveness) and do urban boreal forest structural characteristics such as, native species richness, abundance, and vertical vegetation layers, confer resistance to exotic species establishment and spread (community invasibility)? Eighty-four forest stands were sampled and species composition and mean percent cover analyzed using ordination methods. Results showed that exotic tree/shrub types were of the most concern for invasion to urban boreal forests and that exotic species type, native habitat and propagule supply may be good indicators of invasive potential. Native forest structure appeared to confer a level of resistance to exotic species and medium to high disturbance intensity was associated with exotic species growth and spread without a corresponding loss in native species richness. Results provided large-scale evidence that diverse communities are less vulnerable to exotic species invasion, and that intermediate disturbance intensity supports species coexistence. From a management perspective, the retention of native species and native forest structure in urban forests is favored to minimize the impact of exotic species introductions, protect natural succession patterns, and minimize the spread of exotic species.  相似文献   

17.
Ground beetles were collected by pitfall trapping to compare their species richness between conifer plantations (14 sites) and regenerating forests (14 sites) and among forest ages and to examine how different functional groups responded to forest type, forest age, patch size, elevation, and geographic location in terms of abundance and richness. Ground beetles were collected from middle August to late October, 2008. A total of 34 species were identified from 3,156 collected ground beetles. Individual-based rarefaction curves showed greater species richness in regenerating forests, especially in 40–50-year-old forests, than in conifer plantations. Stepwise multiple regression analysis showed that patch size and elevation were major predictors of species richness and/or abundance of forest specialists, brachypterous species, and large- and medium-bodied species. A multivariate regression tree indicated that patch size and elevation were major predictors of assemblage structure. Although our results suggest that maintaining forest areas adjacent to agricultural landscapes may be essential to preserve ground beetle assemblages irrespective of forest types, further study is necessary to clarify the effects of habitat quality and amount on ground beetles in forests.  相似文献   

18.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

19.
Agriculture of varying management intensity dominates fragmented tropical areas and differentially impacts organisms across and within taxa. We examined impacts of local and landscape characteristics on four groups of ants in an agricultural landscape in Chiapas, Mexico comprised of forest fragments and coffee agroecosystems varying in habitat quality. We sampled ground ants found in leaf litter and rotten logs and arboreal ants found in hollow coffee twigs and on tree trunks. Then using vegetation and agrochemical indices and conditional inference trees, we examined the relative importance of local (e.g. vegetation, elevation, agrochemical) and landscape variables (e.g. distance to and amount of nearby forest and rustic coffee) for predicting richness and abundance of ants. Leaf litter ant abundance increased with vegetation complexity; richness and abundance of ants from rotten logs, twig-nests, and tree trunks were not affected by vegetation complexity. Agrochemical use did not affect species richness or abundance of any ant group. Several local factors (including humus mass, degree of decay of logs, number of hollow twigs, tree circumference, and absence of fertilizers) were significant positive predictors of abundance and richness of some ant groups. Two landscape factors (forest within 200 m, and distance from forest) predicted richness and abundance of twig-nesting and leaf litter ants. Thus, different ant groups were influenced by different characteristics of agricultural landscapes, but all responded primarily to local characteristics. Given that ants provide ecosystem services (e.g. pest control) in coffee farms, understanding ant responses to local and landscape characteristics will likely inform farm management decisions.  相似文献   

20.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号