首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In an era of global environmental change, understanding how disturbance affects the dynamics of ecological communities is crucial. However, few studies have theoretically explored the potential influence of disturbance including both intensity and frequency on compositional change over time in communities with stage structure. A spatially explicit, individual‐based model was constructed incorporating the various demographic responses to disturbance of plants at two different growth stages: seedlings and adults. In the model, we assumed that individuals within each stage were demographically equivalent (neutral) but differed between stages. We simulated a common phenomenon that seedlings suffered more from disturbance such as grazing and fire than adults. We showed how stage‐structured communities of seedlings and adults responded to disturbance with various levels of disturbance frequency and intensity. In “undisturbed” simulations, the relationship between average species abundance (defined here as the total number of individuals divided by species richness) and community composition turnover (measured by the Bray–Curtis similarity index) was asymptotic. However, in strongly “disturbed” simulations with the between‐disturbance intervals greater than one, this relationship became unimodal. Stage‐dependent response to disturbance underlay the above discrepancy between undisturbed and disturbed communities.  相似文献   

2.
The traditional approach to understanding invasions has focused on properties of the invasive species and of the communities that are invaded. A well‐established concept is that communities with higher species diversity should be more resistant to invaders. However, most recently published field data contradict this theory, finding instead that areas with high native plant diversity also have high exotic plant diversity. An alternative environment‐based approach to understanding patterns of invasions assumes that native and exotic species respond similarly to environmental conditions, and thus predicts that they should have similar patterns of abundance and diversity. Establishment and growth of native and exotic species are predicted to vary in response to the interaction of plant growth rates with the frequency and intensity of mortality‐causing disturbances. This theory distinguishes between the probability of establishment and the probability of dominance, predicting that establishment should be highest under unproductive and undisturbed conditions and also disturbed productive conditions. However, the probability of dominance by exotic species, and thus of potential negative impacts on diversity, is highest under productive conditions. The theory predicts that a change in disturbance regime can have opposite effects in environments with contrasting levels of productivity. Manipulation of productivity and disturbance provides opportunities for resource managers to influence the interactions among species, offering the potential to reduce or eliminate some types of invasive species.  相似文献   

3.
Disturbance can impact natural communities in multiple ways. However, there has been a tendency to focus on single indicators of change when examining the effects of disturbance. This is problematic as classical diversity measures, such as Shannon and Simpson indices, do not always detect the effects of disturbance. Here, we instead take a multilevel, hierarchical approach, looking for signatures of disturbance in the capacity and diversity of the community, and also in allocation and demography at the population level. Using recreational use as an example of disturbance, and the freshwater streams of Trinidad as a model ecosystem, we repeatedly sampled the fish communities and physical parameters of eight pairs of recreational and nonrecreational sites every 3 months over a 28‐month period. We also chose the Trinidadian guppy (Poecilia reticulata) as the subject of our population‐level analyses. Regression tree analysis, together with analysis of deviance, revealed that community capacity and community species richness were greater at sites with higher levels of recreational use. Interestingly, measures of community diversity that took into account the proportional abundance of each species were not significantly associated with recreational use. Neither did we find any direct association between recreational use and proportion of guppy biomass in the community. However, population‐level differences were detected in the guppy: Sex ratio was significantly more female‐biased at more disturbed sites. Our findings emphasize the importance of considering multiple levels when asking how disturbance impacts a community. We advocate the use of a multilevel approach when monitoring the effects of disturbance, and highlight gaps in our knowledge when it comes to interpreting these effects.  相似文献   

4.
通过分析不同择伐强度下思茅松(Pinus kesiya)天然林乔木种群的生态位、种间联结、种内与种间竞争和群落稳定性, 探讨干扰强度对思茅松天然林乔木种群种间与种内关系的影响。结果表明: (1)择伐干扰改变了大多数乔木树种在群落中的优势地位, 思茅松优势地位未受影响, 随着择伐干扰强度的增加, 思茅松在群落中的生态位宽度逐渐变大, 在重度干扰的群落中与红木荷(Schima wallichii)一起成为生态幅度最大的树种。(2)通过种间联结与生态位重叠分析发现, 随着干扰强度的加剧, 乔木种群的种间关系发生变化, 中度干扰群落中物种之间的生态位重叠明显高于未干扰和重度干扰群落, 而在三类群落中, 思茅松与其他种群之间的重叠值较小。随着干扰强度增加, 种群间正联结与负联结的种对所占的比例逐渐增加。(3) Hegyi竞争指数表明, 三类群落中思茅松种群的竞争压力主要来自种间, 而干扰强度进一步增加了思茅松种群的种间竞争强度, 其种内平均竞争指数随着对象木胸径的增加而减少。(4)林窗是思茅松种群种间和种内关系变化的主要原因, 三类群落都处于较不稳定的阶段, 但中度干扰群落的物种丰富度与稳定性都高于未干扰和重度干扰的群落。择伐原则依据森林管理的目的而确定, 如以木材培育为主或森林生态系统服务功能为主。  相似文献   

5.
Climate change is projected to exacerbate the effects of anthropogenic disturbance, with negative impacts on ecosystem stability and functioning. We evaluate the additive and combined effects of chronic anthropogenic disturbance (CAD) and rainfall variation on the temporal stability of mutualistic EFN‐bearing plant–ant networks in a Caatinga dry forest. We evaluated whether changes in the stability of these interactions are driven by changes in the stability of the communities of partners involved and/or in ant behavior. We sampled EFN‐bearing plant–ant networks in sixteen 20 × 20 m plots distributed across CAD and rainfall gradients. The stability of EFN‐bearing plant and attendant–ant communities were measured as the inverse of temporal differences in their community structure and composition. We also computed the stability of EFN‐bearing plant–ant networks by measuring the inverse of temporal differences in network specialization metrics. We found that, in general, the structure and composition of plant and ant interacting communities were similarly stable along both environmental gradients. Only CAD and its interaction with rainfall affected the temporal stability of EFN‐bearing plant diversity, which declined as CAD increased, with a more pronounced relationship in wetter areas. However, variation in levels of CAD and, to a lesser extent, rainfall greatly modulated the stability of EFN‐bearing plant–ant network specialization. CAD reduced the stability of network generality (specialization at the ant level), an effect that was much stronger in wetter areas. Meanwhile, the stability in network vulnerability (specialization at the plant level) decreased with the increase of CAD and the decrease of rainfall levels. Finally, there was a trend of decreasing stability in specialization of the overall network with increasing CAD. Our results suggest that changes in the structure of interaction networks are mainly driven by a switch in ant behavior rather than by changes in the structure and composition of plant and ant communities between years.  相似文献   

6.
Theory predicts that species diversity can enhance stability of community‐level biomass while simultaneously decreasing population‐level stability. Enrichment can theoretically destabilize communities but effects may become weaker with increasing diversity because of the inclusion of consumer‐resistant prey. Few experiments using direct manipulations of species diversity have tested these predictions. We used laboratory‐based aquatic food webs to examine the effects of species composition, diversity and enrichment on temporal variability of population‐ and community‐level biomass. We found weak effects of enrichment on population‐ and community‐level stability. However, diversity enhanced community‐level stability while species composition had no influence. In contrast, composition effects outweighed diversity effects when stability was measured at the population level. We found no negative effects of diversity on population‐level stability, in opposition to theory. Our results indicate that diversity can enhance stability in multitrophic systems, but effects vary with the scale of biological organization at which stability is measured.  相似文献   

7.
Disturbance frequency, intensity, and areal extent may influence the effects of disturbance on biological communities. Furthermore, these three factors may have interacting effects on biological diversity. We manipulated the frequency, intensity, and area of disturbance in a full-factorial design on artificial substrates and measured responses of benthic macroinvertebrates in a northern Vermont stream. Macroinvertebrate abundance was lower in all disturbance treatments than in the undisturbed control. As in most other studies in streams, species density (number of species/sample) was lower in disturbed treatments than in undisturbed controls. However, species density is very sensitive to total abundance of a sample, which is usually reduced by disturbance. We used a rarefaction method to compare species richness based on an equivalent number of individuals. In rarefied samples, species richness was higher in all eight disturbed treatments than in the undisturbed control, with significant increases in species richness for larger areas and greater intensities of disturbance. Increases in species richness in response to disturbance were consistent within patches, among patches with similar disturbance histories, and among patches with differing disturbance histories. These results provide some support for Huston’s dynamic-equilibrium model but do not support the intermediate-disturbance hypothesis. Our analyses demonstrate that species richness and species density can generate opposite patterns of community response to disturbance. The interplay of abundance, species richness, and species density has been neglected in previous tests of disturbance models. Received: 20 July 1999 / Accepted: 26 January 2000  相似文献   

8.
To explore how environmental variability may create non‐random community structure, we simulated the assembly of model communities under varying levels of environmental variability. We assembled communities by creating a large pool of randomly constructed species, and then added species from this pool sequentially, allowing extinctions of invading and resident species to occur until the community became saturated. Because much current research on community structure focuses on single trophic levels, we constructed species pools consisting only of competitors. To compare with more realistic communities, we also created species pools with multiple trophic levels. For both types of communities, following assembly we calculated a variety of metrics of community structure, and five measures of community stability. Communities assembled under high environmental variability had fewer species, fewer and weaker interactions among species, and greater evenness in abundance of persisting species. For single trophic‐level communities, community size was dictated primarily by competitive exclusion. In contrast, for multiple trophic‐level communities, community size was increasingly limited by dynamical instabilities as environmental variability increased. Differences in community structure resulting from assembly under high environmental variability led to differences in community stability. According to two measures of stability related to population variability – the characteristic return rate to equilibrium and the coefficient of variation in individual species densities – stability increased for communities assembled under high environmental variability. In contrast, three additional measures of stability that are not directly related to population variability showed a variety of patterns, either increasing, decreasing, or remaining constant. Thus, communities assembled in highly variable environments are not necessarily generically more stable. Our results demonstrate that environmental variability can structure communities and affect their stability properties in non‐trivial ways. Thus, when making predictions about the response of communities to future extinctions or environmental degradation, account should be given to the forces responsible for community structure.  相似文献   

9.
刘瑞雪  陈龙清 《生态学报》2021,41(16):6566-6579
受城市化与人类活动等因素影响而退化的水滨带植被的恢复与重建是近年来生态环境的热点问题。植物群落的种间关系直接影响植被的演替与恢复。以南水北调中线一期工程通水前的丹江口水库原有水滨带植被为研究对象,对年均多于9个月(海拔142 m以下)、6-9个月(海拔142-147 m)、3-6个月(海拔147-151 m)和少于3个月(海拔151-157 m)的4种不同强度水淹干扰的水滨带植物群落的稳定性和种间关系进行分析,探讨不同水淹干扰强度对水库水滨带植物群落稳定性及种间关系的影响。采用M.Godron稳定性测定法对植物群落稳定性进行分析,通过方差比率(VR)、χ2检验、联结系数(AC)以及Spearman秩相关检验对不同水淹干扰强度下的植物群落优势种进行种间关联分析。结果表明:(1)水库水滨带植物群落稳定性从高到低依次为水淹时长3-6个月、水淹时长6-9个月、水淹时长少于3个月和水淹时长多于9个月。中度水淹干扰下的植物群落稳定性要好于重度和轻度水淹干扰的植物群落;(2)不同水淹干扰强度下水滨带植物群落总体性关联表现为显著正相关。随着水淹时间增加,群落中正联结种对占总对数的比例呈下降趋势,负联结种对比例呈增加趋势,正负联结比值降低,群落内种间联结强度逐渐降低,说明水淹干扰强度增加会导致水滨带植物群落种群间相互依存关系减弱或竞争关系加剧。在此基础上,探讨不同水淹干扰强度下物种的空间分布和生态习性,并提出针对不同水淹干扰强度的水滨带植被恢复的物种选择建议。  相似文献   

10.
Wildfire is a dominant disturbance in many ecosystems, and fire frequency and intensity are being altered as climates change. Through effects on mortality and regeneration, fire affects plant community composition, species richness, and carbon cycling. In some regions, changes to fire regimes could result in critical, non‐reversible transitions from forest to non‐forested states. For example, the Klamath ecoregion (northwest United States) supports extensive conifer forests that are initially replaced by hardwood chaparral following high‐severity fire, but eventually return to conifer forest during the fire‐free periods. Climate change alters both the fire regime and post‐fire recovery dynamics, potentially causing shrubland to persist as a stable (i.e. self‐renewing) vegetation stage, rather than an ephemeral stage. Here, we present a theoretical investigation of how changes in plant traits and fire regimes can alter the stability of communities in forest‐shrub systems such as the Klamath. Our model captures the key characteristics of the system, including life‐stage‐specific responses to disturbance and asymmetrical competitive interactions. We assess vegetation stability via invasion analysis, and conclude that portions of the landscape that are currently forested also can be stable as shrubland. We identify parameter thresholds where community equilibria change from stable to unstable, and show how these thresholds may shift in response to changes in life‐history or environmental parameters. For instance, conifer maturation rates are expected to decrease as aridity increases under climate change, and our model shows that this reduction decreases the fire frequencies at which forests become unstable. Increases in fire activity sufficient to destabilize forest communities are likely to occur in more arid future climates. If widespread, this would result in reduced carbon stocks and a positive feedback to climate change. Changes in stability may be altered by management practices.  相似文献   

11.
Clonality is a common feature of plants and benthic marine organisms. In some cases clonal propagation results in a modest increase in population density, while in other cases dense populations may be generated by the propagation of only a few clones. We analyzed the population structure of the clonal gorgonian Plexaura kuna across several reef habitats with a range of disturbance regimes in the San Blas Islands, Panama, and the Florida Keys, U.S.A. Using multilocus DNA fingerprinting to distinguish clones, we estimated that clones ranged in size from single individuals to 500 colonies. The number of genotypes identified on nine reefs ranged from three to 25. Population density and clonal structure varied markedly among reefs with GO:GE ranging from 0.03 to 1.00. On some reefs vegetative reproduction transformed P. kuna from a rare species to the numerically most abundant gorgonian. The effect of clonal propagation on P. kuna population structure was dependent on interactions between fragmentation and the reef environment (disturbance regime, substratum). We present a generalized model relating population structure of clonal species to disturbance and the mode of vegetative propagation. Disturbance promotes colony propagation and skews the size-frequency distribution of clones among P. kuna and many species that propagate via fragmentation. Propagation of these species is promoted by disturbance (disturbance sensitive), and they tend to have clones that are dispersed across local sites. Species that fragment and have dispersed clones, have high genotypic diversity in habitats with low levels of disturbance. Genotypic diversity then decreases at intermediate disturbance and increases again at the highest disturbance levels. Clonal species that do not rely on disturbance for vegetative propagation (disturbance insensitive) generally do not disperse and form aggregated clones. Among these taxa disturbance has a greater affect on individual survival than on propagation. Genotypic diversity is directly related to the level of disturbance until very high levels of disturbance, at which time genotypic diversity declines.  相似文献   

12.
Patch‐size distribution and plant cover are strongly associated to arid ecosystem functioning and may be a warning signal for the onset of desertification under changes in disturbance regimes. However, the interaction between regional productivity level and human‐induced disturbance regime as drivers for vegetation structure and dynamics remain poorly studied. We studied grazing disturbance effects on plant cover and patchiness in three plant communities located along a regional productivity gradient in Patagonia (Argentina): a semi‐desert (low‐productivity community), a shrub‐grass steppe (intermediate‐productivity community) and a grass steppe (high‐productivity community). We sampled paddocks with different sheep grazing pressure (continuous disturbance gradients) in all three communities. In each paddock, the presence or absence of perennial vegetation was recorded every 10 cm along a 50 m transect. Grazing effects on vegetation structure depended on the community and its association to the regional productivity. Grazing decreased total plant cover while increasing both the frequency of small patches and the inter‐patch distance in all communities. However, the size of these effects was the greatest in the high‐productivity community. Dominant species responses to grazing explained vegetation patch‐ and inter‐patch‐size distribution patterns. As productivity decreases, dominant species showed a higher degree of grazing resistance, probably because traits of species adapted to high aridity allow them to resist herbivore disturbance. In conclusion, our findings suggest that regional productivity mediates grazing disturbance impacts on vegetation mosaic. The changes within the same range of grazing pressure have higher effects on communities found in environments with higher productivity, markedly promoting their desertification. Understanding the complex interactions between environmental aridity and human‐induced disturbances is a key aspect for maintaining patchiness structure and dynamics, which has important implications for drylands management.  相似文献   

13.
Deforestation continues to jeopardize Malagasy primates as viable habitats become smaller, more fragmented, and more disturbed. This deforestation can lead to changes in diet, microhabitat, and gene flow between populations of endangered species, and it remains unclear how these changes may affect gut microbiome (GM) characteristics. The black‐and‐white ruffed lemur (Varecia variegata), which is among Madagascar's most threatened lemur species, provides a critical model for understanding the relationships between historical and on‐going deforestation (habitat disturbance), feeding ecology, and GM composition and diversity. We studied four populations inhabiting two rainforests (relatively pristine vs. highly disturbed) in southeastern Madagascar. We conducted full‐day focal animal behavioral follows and collected fecal samples opportunistically across a three‐month period. Our results indicate that lemurs inhabiting sites characterized by habitat disturbance and low dietary diversity exhibited reduced gut microbial alpha diversity. We also show that these same factors were associated with high community dissimilarity using weighted and unweighted UniFrac metrics. Finally, an indicator species analysis showed that the most pristine site was characterized by an abundance of methanogenic archaea. While it is impossible to disentangle the relative contributions of each confounding variable presented by our sampling design, these results provide crucial information about GM variability, thereby underscoring the importance of monitoring endangered species at the population‐level.  相似文献   

14.
Land‐use and management are disturbance factors that have diverse effects on community composition and structure. In traditional rural grasslands, such as meadows and pastures, low‐intensity management is maintained to enhance biodiversity. Maintenance of road verges, in turn, creates habitat, which may complement traditional rural grasslands. To evaluate the effect of low‐intensity disturbance on insect communities, we characterized species abundance distributions (SAD) for Carabidae, Formicidae, and Heteroptera in three grassland types, which differed in management: meadows, pastures, and road verges. The shape of SAD was estimated with three parameters: abundance decay rate, dominance, and rarity. We compared the SAD shape among the grassland types and tested the effect of environmental heterogeneity (plant species richness) and disturbance intensity (trampling in pastures) on SADs. The shape of SADs did not differ among the grassland types but among the taxonomic groups instead. Abundance decay rate and dominance were larger for Formicidae, and rarity smaller, than for Carabidae and Heteroptera. For Carabidae and window‐trapped Heteroptera, rarity increased with increasing plant species richness. For Formicidae, dominance increased with trampling intensity in pastures. Although the SAD shape remained largely unchanged, the identity of the dominant species tended to vary within and among grassland types. Our study shows that for a given taxonomic group, the SAD shape is similar across habitat types with low‐intensity disturbances resulting from different management. This suggests that SADs respond primarily to the intensity of disturbance and thus could be best used in monitoring communities across strong disturbance and environmental gradients. Because taxonomic groups can inherently have different SADs, taxon‐specific SADs for undisturbed communities must be empirically documented before the SAD shape can be used as an indicator of environmental change. Because the identity of the dominant species changes from management type to another, the SAD shape alone is not an adequate monitoring tool.  相似文献   

15.
In 1998, seawater temperature anomalies led to unprecedented levels of coral bleaching on reefs worldwide. We studied the direct effects of this thermal event on benthic communities and its indirect effects on their associated coral reef fish communities at a group of remote reefs off NW Australia. Long‐term monitoring of benthic and fish assemblages on these reefs allowed us to compare the responses of these communities to coral bleaching using a data series that included 4 years before, and 6 years following, this bleaching event. While bleaching mortality was evident to >30 m depth, it was patchy among the shallower survey sites with decreases in live coral cover ranging from 30% to 90% across seven surveyed locations Within 2 years of the bleaching, hard coral recovery had begun at all sites and by 2003 reef‐wide coral cover had increased to ~39% of its preimpact levels. We exploited this pattern of differential survival of corals among sites, the associated changes in these benthic communities, and their patterns of recovery, to better understand links between benthic community dynamics and their associated fish communities. Temporal changes in the resident fish communities strongly reflected the differential shifts in the benthic communities, but were lagged by 12–18 months. Five years after the bleaching event, the fish communities on five of the seven surveyed locations showed evidence of recovery, however, none had regained their preimpact structures. Analyses of these communities by taxonomic family revealed a range of responses to the disturbance reflective of their life‐histories and trophic and habitat affiliations. The slow but recognizable recovery of this isolated reef system has parallels with other relatively isolated systems that displayed resilience to the 1998 bleaching event, e.g. the Chagos archipelago, but it also contrasts sharply with low levels of resilience documented in other isolated reef systems subject to the same disturbance, e.g. the Seychelles. In this context, our results highlight the significant knowledge gaps remaining in understanding the resilience of these ecosystems to disturbance.  相似文献   

16.
In many arid landscapes, springs provide the only reliable source of water. Accordingly, both native species and human land uses, including diversion of water, livestock grazing, and recreation, tend to concentrate around springs and spring‐fed riparian areas. We examined whether species richness and composition of aquatic macroinvertebrates at 45 springs in the Spring Mountains, an isolated mountain range in the eastern Mojave Desert (Nevada, USA), could be predicted using readily measured environmental gradients and estimates of disturbance intensity. The Spring Mountains is a focus of regional conservation planning, and managers are charged with prioritizing its springs for conservation and rehabilitation. Our results suggested that species richness of aquatic macroinvertebrates in the Spring Mountains system may be greatest at intermediate levels of natural and human disturbance. Discharge and springbrook length appeared to be only weakly correlated with species richness, whereas neither elevation, nor water temperature, nor electrical conductance was significantly associated with species richness. Nestedness analyses demonstrated that species present in relatively depauperate locations tended to be subsets of the species present in locations that were richer in species, but that pattern did not appear to be driven by either disturbance intensity or by the environmental variables we measured. Disturbance intensity was not associated with the extent to which species presences and absences were predictable. Although our results should not be interpreted to mean that major environmental gradients and disturbance intensity have no effect on distributional patterns of aquatic invertebrates in the Spring Mountains, the ability of these variables to serve as predictors of species richness and composition may be relatively low. Springs and other wetlands in arid landscapes are characterized by isolation and unpredictable disturbances, and faunal responses to environmental gradients may tend to be individualistic and taxon‐specific.  相似文献   

17.
Abstract Multiple disturbance regimes are increasingly common as novel anthropogenic disturbances are added to existing natural disturbances. However, it is generally unknown whether simultaneous or sequential effects of different forms of disturbance are predictable from the independent effects of each disturbance. This study examines the short‐term effects of sequential disturbance by mineral sand‐mining followed by fire in a forest community in south‐eastern Australia. Four combinations of disturbance were sampled: unburned mined, burned mined, unburned forest (unmined) and burned forest (unmined, with between‐fire interval matching the disturbance interval between mining and fire of the burned mined treatment). All combinations were sampled approximately 12 months following fire on the burned sites. The impact of fire after mining depended on disturbance interval. Sites burned 0.5–2.4 years since mining had fewer native vascular plant species than unburned mined sites of the same mined age, whereas sites with 10–16 years or 20–26 years between mining and fire had greater native species richness than unburned mined sites of the same age. Burning 20–26 years after mining brought native species richness within the range of burned forest. For both unmined and mined sites native seedling densities increased with burning, and with longer disturbance intervals. Weed species richness and weed seedling densities were greater on mined sites than in forest, and burning mined sites elevated weed seedling densities further, particularly for short intervals. Both disturbance interval and fire intensity are likely to have contributed to these results, as intensity on mined areas increased with interval, and at 20–26 years post‐mining was equivalent to unmined forest. These results suggest that fire could be used to promote rehabilitation of these mined areas after at least 10 years, but should be excluded from earlier stages of post‐mining regeneration. However, other sources of spatial and temporal variability should be considered in addition to interval and intensity, as variation among mined areas was correlated with post‐fire weather conditions and available weed sources. Finally, the combined effects of mining and fire could not be predicted from knowledge of the disturbances operating separately, indicating that effects of multiple disturbance may be synergistic rather than additive.  相似文献   

18.
Aim Island faunas, particularly those with high levels of endemism, usually are considered especially susceptible to disruption from habitat disturbance and invasive alien species. We tested this general hypothesis by examining the distribution of small mammals along gradients of anthropogenic habitat disturbance in northern Luzon Island, an area with a very high level of mammalian endemism. Location Central Cordillera, northern Luzon Island, Philippines. Methods  Using standard trapping techniques, we documented the occurrence and abundance of 16 endemic and two non‐native species along four disturbance gradients where habitat ranged from mature forest to deforested cropland. Using regression analysis and AICc for model selection, we assessed the influence of four predictor variables (geographic range, elevational range, body size and diet breadth) on the disturbance tolerance of species. Results Non‐native species dominated areas with the most severe disturbance and were rare or absent in mature forest. Native species richness declined with increasing disturbance level, but responses of individual species varied. Elevational range (a measure of habitat breadth) was the best predictor of response of native species to habitat disturbance. Geographic range, body size and diet breadth were weakly correlated. Main conclusions The endemic small mammal fauna of northern Luzon includes species adapted to varying levels of natural disturbance and appears to be resistant to disruption by resident alien species. In these respects, it resembles a diverse continental fauna rather than a depauperate insular fauna. We conclude that the long and complex history of Luzon as an ancient member of the Philippine island arc system has involved highly dynamic ecological conditions resulting in a biota adapted to changing conditions. We predict that similar responses will be seen in other taxonomic groups and in other ancient island arc systems.  相似文献   

19.
Understanding stability across ecological hierarchies is critical for landscape management in a changing world. Recent studies showed that synchrony among lower‐level components is key to scaling temporal stability across two hierarchical levels, whether spatial or organizational. But an extended framework that integrates both spatial scale and organizational level simultaneously is required to clarify the sources of ecosystem stability at large scales. However, such an extension is far from trivial when taking into account the spatial heterogeneities in real‐world ecosystems. In this paper, we develop a partitioning framework that bridges variability and synchrony measures across spatial scales and organizational levels in heterogeneous metacommunities. In this framework, metacommunity variability is expressed as the product of local‐scale population variability and two synchrony indices that capture the temporal coherence across species and space, respectively. We develop an R function ‘var.partition’ and apply it to five types of desert plant communities to illustrate our framework and test how diversity shapes synchrony and variability at different hierarchical levels. As the observation scale increased from local populations to metacommunities, the temporal variability of plant productivity was reduced mainly by factors that decreased species synchrony. Species synchrony decreased from local to regional scales, and spatial synchrony decreased from species to community levels. Local and regional species diversity were key factors that reduced species synchrony at the two scales. Moreover, beta diversity contributed to decreasing spatial synchrony among communities. We conclude that our new framework offers a valuable toolbox for future empirical studies to disentangle the mechanisms and pathways by which ecological factors influence stability at large scales.  相似文献   

20.
放牧过程通过牲畜的啃食、践踏作用干扰草场环境,使草地群落的物种组成发生变化,植物种群的优势地位发生更替。结果表明,随放牧干扰强度加重,从盐湿化草甸到典型草原,群落植物种丰富度呈下降趋势。β多样性测度结果显示,盐湿化草甸和羊草杂类草草甸群落物种变化的中度干扰出现在轻牧→中牧阶段,并在整个放牧干扰进程中,表现较低的稳定性;草甸草原和典型草原群落出现在中牧→重牧阶段;而荒漠草原物种变化表现出高度的稳定性,从轻牧到过牧物种替代仅1~3种。各群落放牧干扰植物多样性的稳定性次序是:荒漠草原>典型草原≥草甸草原>盐湿化草甸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号