首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate‐related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate‐influenced variables including sea‐surface temperature, southern oscillation indices (SOI, Z4), wind‐wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO‐related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate‐related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.  相似文献   

2.
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically – how an organism shifts the timing of major biological events in response to the environment – is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.  相似文献   

3.
Resource competition theory is a conceptual framework that provides mechanistic insights into competition and community assembly of species with different resource requirements. However, there has been little exploration of how resource requirements depend on other environmental factors, including temperature. Changes in resource requirements as influenced by environmental temperature would imply that climate warming can alter the outcomes of competition and community assembly. We experimentally demonstrate that environmental temperature alters the minimum light and nitrogen requirements – as well as other growth parameters – of six widespread phytoplankton species from distinct taxonomic groups. We found that species require the most nitrogen at the highest temperatures while light requirements tend to be lowest at intermediate temperatures, although there are substantial interspecific differences in the exact shape of this relationship. We also experimentally parameterize two competition models, which we use to illustrate how temperature, through its effects on species’ traits, alters competitive hierarchies in multispecies assemblages, determining community dynamics. Developing a mechanistic understanding of how temperature influences the ability to compete for limiting resources is a critical step towards improving forecasts of community dynamics under climate warming.  相似文献   

4.
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species’ climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species’ realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species’ ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change.  相似文献   

5.
Poleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change. We conducted an amplified fragment length polymorphism (AFLP)‐based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier‐based (DFDIST and BayeScan) and association‐based (Isolation‐By‐Adaptation) statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use. We present evidence for (i) limited effects of range expansion on population genetic structure and (ii) strong signatures of selection at approximately 5% AFLP loci associated with both the poleward range expansion of A. agestis and differences in habitat use across long‐established and recently colonized sites. Patterns of allele frequency variation at these candidate loci suggest that adaptation to new habitats at the range margin has involved selection on genetic variation in habitat use found across the long‐established part of the range. Our results suggest that evolutionary change is likely to affect species’ responses to climate change and that genetic variation in ecological traits across species’ distributions should be maximized to facilitate range shifts across a fragmented landscape, particularly in species that show strong associations with particular habitats.  相似文献   

6.
Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid‐latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002–2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species’ functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.  相似文献   

7.
Aim Evidence indicates that species are responding to climate change through distributional range shifts that track suitable climatic conditions. We aim to elucidate the role of meso‐scale dispersal barriers in climate‐tracking responses. Location South coast of England (the English Channel). Methods Historical distributional data of four intertidal invertebrate species were logistically regressed against sea surface temperature (SST) to determine a climate envelope. This envelope was used to estimate the expected climate‐tracking response since 1990 along the coast, which was compared with observed range expansions. A hydrodynamic modelling approach was used to identify dispersal barriers and explore disparities between expected and observed climate tracking. Results Range shifts detected by field survey over the past 20 years were less than those predicted by the changes that have occurred in SST. Hydrodynamic model simulations indicated that physical barriers produced by complex tidal currents have variably restricted dispersal of pelagic larvae amongst the four species. Main conclusions We provide the first evidence that meso‐scale hydrodynamic barriers have limited climate‐induced range shifts and demonstrate that life history traits affect the ability of species to overcome such barriers. This suggests that current forecasts may be flawed, both by overestimating range shifts and by underestimating climatic tolerances of species. This has implications for our understanding of climate change impacts on global biodiversity.  相似文献   

8.
Predicting species’ responses to a warming and drying (for North America’s desert southwest region) climate provides focus for monitoring to track shifts in species’ occupancy, and ultimately identifying management options to stem losses to biodiversity. Here we describe a monitoring framework to achieve that objective. A first step is to identify which species to monitor; which species will provide the greatest information for discerning the effects of climate change versus the myriad of other stressors that may impact their distributions and abundance. To select focal species we employed two complimentary approaches. One tool, vulnerability assessments (VAs), use available scientific literature to assess exposure to environmental stressors and adaptive capacity or resilience to climate change. Another approach is habitat suitability modeling (HSM) coupled with simulated temperature shifts. This method statistically combines environmental variables at known species’ locations, such as climate and terrain, to model the complex interaction of factors that constrain a species’ distribution. All other variables held constant, simulated temperature shifts can identify species’ sensitivities to those shifts and identify potential refugia. We used these tools to assess risk of local extinction due to predicted levels of climate change, as well as to identify where to locate monitoring plots to best capture the shifts in species distributions over time. A challenge in developing a monitoring program to document the effects of climate change on biodiversity is program sustainability. One way to support and enhance the sustainability of such a program will be to couple trained biologists with volunteer citizen scientists.  相似文献   

9.
As temperatures increase in a warming world, there will be different responses among related plant species, with some species able to increase growth rate under warmer conditions and others less likely. Here, we identify survival and growth parameters in a group of 19 related Australian daisies from the genera Brachyscome and Pembertonia when exposed to higher soil temperature, focusing particularly on species from the alpine environment. We used a common garden approach to measure growth and survival under warming. We tested for the effects of evolutionary history by investigating phylogeny and testing for a phylogenetic signal, and for the effects of ecological history by considering climatic variables associated with species distributions in their native range. Evolutionary history did not have a detectable effect on warming responses. While there was a moderate signal for plant growth in the absence of warming, there was no signal for growth changes in response to warming, despite variability among species to warming that ranged from positive to negative growth responses. There was no strong effect of climate context, as species that showed a positive response to warming did not necessarily originate from hotter environments. In fact, several species from hot environments grew relatively poorly when exposed to higher soil temperature. However, species endemic to alpine areas were less likely to benefit from warming than widespread species. We found a strong phylogenetic signal for climate history, in that closely related species tend to occur in areas with similar annual variability in precipitation. Species differences in response to soil warming were variable and difficult to link to climate conditions except for the poor response of alpine endemics. There was no significant association between survival and warming responses of species. However, as some species showed weak growth responses, this may reduce their fitness into the future.  相似文献   

10.
The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns are linked – after accounting for regional effects – to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co‐occurrences of carnivorous, migratory and cold‐climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life‐history traits beyond the climatic niche. They further offer a novel species‐oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds.  相似文献   

11.
Understanding whether and how ecological traits affect species’ geographic distributions is a fundamental issue that bridges ecology and biogeography. While climate is thought to be the major determinant of species’ distributions, there is considerable variation in the strength of species’ climate–distribution relationships. One potential explanation is that species with relatively low dispersal ability cannot reach all geographic areas where climatic conditions are suitable. We tested the hypothesis that species from different taxonomic groups varied in their climate–distribution relationships because of differences in life history strategies, in particular dispersal ability. We conducted a meta‐analysis by combining the discrimination ability (AUC values) from 4317 species distribution models (SDMs) using fit as an indication of the strength of the species’ climate–distribution relationship. We found significant differences in the strength of species’ climate–distribution relationships across taxonomic groups, however we did not find support for the dispersal hypothesis. Our results suggest that relevant ecological trait variation among broad taxonomic groups may be related to differences in species’ climate–distribution relationships, however which ecological traits are important remains unclear.  相似文献   

12.
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree‐ring records. Yet typical tree‐ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.  相似文献   

13.
Analyzing the relationships between the distribution of animal species and climatic variables is not only important for understanding which factors govern species distribution but also for improving our ability to predict future ecological responses to climate change. In the context of global climate change, amphibians are of particular interest because of their extreme sensitivity to the variation of temperature and precipitation regimes. We analyzed species–climate relationships for 17 amphibian species occurring in Italy using species distribution data at the 10 × 10 km resolution. A machine learning method, Random Forests, was used to model the distribution of amphibians in relation to a set of 18 climatic variables. The results showed that the variables which had the highest importance were those related to precipitation, indicating that precipitation is an important factor in determining amphibian distribution. Future projections showed a complex response of species distributions, emphasizing the potential severity of climate change on the distributions of amphibians in Italy. The species that will decrease the most are those occurring in mountainous and Mediterranean areas. Our results provide some preliminary information that could be useful for amphibian conservation, indicating if future conservation priorities for some species should be enhanced.  相似文献   

14.
15.
1. Body size is highly correlated with physiological traits, fitness, and trophic interactions. These traits are subject to change if there are widespread reductions of body size with warming temperatures, which is suggested as one of the ‘universal’ ecological responses to climate change. However, general patterns of body size response to temperature in insects have not yet emerged. 2. To address this knowledge gap, we paired the wing length (as a proxy for body size) of 5331 museum specimens of 14 species of British Odonata with historical temperature data. Three sets of analyses were performed: (i) a regression analysis to test for a relationship between wing length and mean seasonal temperature within species and subsequent comparisons across species and suborders; (ii) an investigation of whether the body size of species has an effect on sensitivity to warming temperature; and (iii) a linear-mixed effects model to investigate factors that potentially affect temperature–size response. 3. The regression analysis indicated that wing length is negatively correlated with mean seasonal temperatures for Zygoptera, whereas Anisoptera showed no significant correlation with temperature. 4. There is a significant decline in wing length of all Zygoptera (but not Anisoptera) with collection date, suggesting that individuals emerging later in the season are smaller. 5. Life-cycle type was not important for predicting wing length–temperature responses, whereas sex, species, and suborder were indicated as important factors affecting the magnitude of temperature–size responses in Odonata. 6. Overall, wing lengths of Zygoptera are more sensitive to temperature and collection date than Anisoptera.  相似文献   

16.
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.  相似文献   

17.
While soil ecosystems undergo important modifications due to global change, the effect of soil properties on plant distributions is still poorly understood. Plant growth is not only controlled by soil physico-chemistry but also by microbial activities through the decomposition of organic matter and the recycling of nutrients essential for plants. A growing body of evidence also suggests that plant functional traits modulate species’ response to environmental gradients. However, no study has yet contrasted the importance of soil physico-chemistry, microbial activities and climate on plant species distributions, while accounting for how plant functional traits can influence species-specific responses. Using hierarchical effects in a multi-species distribution model, we investigate how four functional traits related to resource acquisition (plant height, leaf carbon to nitrogen ratio, leaf dry matter content and specific leaf area) modulate the response of 44 plant species to climatic variables, soil physico-chemical properties and microbial decomposition activity (i.e. exoenzymatic activities) in the French Alps. Our hierarchical trait-based model allowed to predict well 41 species according to the TSS statistic. In addition to climate, the combination of soil C/N, as a measure of organic matter quality, and exoenzymatic activity, as a measure of microbial decomposition activity, strongly improved predictions of plant distributions. Plant traits played an important role. In particular, species with conservative traits performed better under limiting nutrient conditions but were outcompeted by exploitative plants in more favorable environments. We demonstrate tight associations between microbial decomposition activity, plant functional traits associated to different resource acquisition strategies and plant distributions. This highlights the importance of plant–soil linkages for mountain plant distributions. These results are crucial for biodiversity modelling in a world where both climatic and soil systems are undergoing profound and rapid transformations.  相似文献   

18.
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12‐fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change.  相似文献   

19.
Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate – for example photoperiod, biotic interactions, or edaphic conditions – might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf‐out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.  相似文献   

20.
Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta‐analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species’ distribution and phenology changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号