首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns.  相似文献   

2.
Macroevolutionary theory predicts high rates of evolution should occur early in a clade's history as species exploit ecological opportunity. Evidence from the fossil record has shown a high prevalence of early bursts in morphological evolution, but recent work has provided little evidence for early high rates in the evolution of extant clades. Here, I test the prevalence of early bursts in extant data using phylogenetic comparative methods. Existing models are extended to allow a shift from a background Brownian motion (BM) process to an early burst process within subclades of phylogenies, rather than an early burst being applied to an entire phylogenetic tree. This nested early burst model is compared to other modes of evolution that can occur within subclades, such as evolution with a constraint (Ornstein‐Uhlenbeck model) and nested BM rate shift models. These relaxed models are validated using simulations and then are applied to body size evolution of three major clades of amniotes (mammals, squamates and aves) at different levels of taxonomic organization (order, family). Applying these unconstrained models greatly increases the support for early bursts within nested subclades, and so early bursts are the most common model of evolution when only one shift is analysed. However, the relative fit of early burst models is worse than models that allow for multiple shifts of the BM or OU process. No single‐shift or homogenous model is superior to models of multiple shifts in BM or OU evolution, but the patterns shown by these multirate models are generally congruent with patterns expected from early bursts.  相似文献   

3.
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow‐down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell‐size and fermentation versatility). We found that speciation rates are constant during the time‐range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell‐size), suggesting that lineages resemble each other in trait‐values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell‐size. We also found a significant phylogenetic regression between cell‐size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common‐garden conditions combined with comparative analyses are warranted.  相似文献   

4.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

5.
A fundamental goal of evolutionary ecology is understanding the processes responsible for contemporary patterns of morphological diversity and species richness. Transitions across the marine–freshwater interface are regarded as key triggers for adaptive radiation of many clades. Using the Australian terapontid fish family as a model system we employed phylogenetic analyses to compare the rates of ecological (dietary) and morphological evolution between marine and freshwater species of the family. Results suggested significantly higher rates of phenotypic evolution in key dietary and morphological characters in freshwater species compared to marine counterparts. Moreover, there was significant correlation between several of these dietary and morphological characters, suggesting an underlying ecomorphological aspect to these greater rates of phenotypic evolution in freshwater clades. Australia’s biogeographic history, which has precluded colonisation by many of the major ostariophysan fish families that make up much global freshwater fish diversity, appears to have provided the requisite ‘ecological opportunity’ to facilitate the radiation of invading marine-derived fish clades.  相似文献   

6.
According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such ‘early bursts’ of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time‐calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation.  相似文献   

7.
Diversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids. Evolutionary patterns in multivariate functional morphospace were examined using a phylomorphospace approach, disparity-through-time analyses and by comparing Brownian motion (BM) and adaptive peak evolutionary models using maximum likelihood. The most species-rich and functionally disparate clade (CAS) expanded more efficiently in morphospace and evolved more rapidly compared with both BM expectations and its sister clade (GGD). Members of the CAS clade also exhibited an early burst in functional evolution that corresponds to the development of modern ecological roles and may have been related to the colonization of a novel adaptive peak characterized by fast oral jaw mechanics. Furthermore, reduced ecological opportunity following this early burst may have restricted functional evolution in the GGD clade, which is less species-rich and more ecologically specialized. Patterns of evolution in ecologically important functional traits are consistent with a pattern of adaptive radiation within the most diverse clade of Geophagini.  相似文献   

8.
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations—more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad‐scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early‐burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long‐term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.  相似文献   

9.
Early burst patterns of diversification have become closely linked with concepts of adaptive radiation, reflecting interest in the role of ecological opportunity in modulating diversification. But, this model has not been widely explored on coral reefs, where biodiversity is exceptional, but many lineages have high dispersal capabilities and a pan‐tropical distribution. We analyze adaptive radiation in labrid fishes, arguably the most ecologically dominant and diverse radiation of fishes on coral reefs. We test for time‐dependent speciation, trophic diversification, and origination of 15 functional innovations, and early bursts in a series of functional morphological traits associated with feeding and locomotion. We find no evidence of time‐dependent or early burst evolution. Instead, the pace of speciation, ecological diversification, and trait evolution has been relatively constant. The origination of functional innovations has slowed over time, although few arose early. The labrid radiation seems to have occurred in response to extensive and still increasing ecological opportunity, but within a rich community of antagonists that may have prevented abrupt diversification. Labrid diversification is closely tied to a series of substantial functional innovations that individually broadened ecological diversity, ultimately allowing them to invade virtually every trophic niche held by fishes on coral reefs.  相似文献   

10.
To assess how ecological and morphological disparity is interrelated in the adaptive radiation of Antarctic notothenioid fish we used patterns of opercle bone evolution as a model to quantify shape disparity, phylogenetic patterns of shape evolution, and ecological correlates in the form of stable isotope values. Using a sample of 25 species including representatives from four major notothenioid clades, we show that opercle shape disparity is higher in the modern fauna than would be expected under the neutral evolution Brownian motion model. Phylogenetic comparative methods indicate that opercle shape data best fit a model of directional selection (Ornstein–Uhlenbeck) and are least supported by the “early burst” model of adaptive radiation. The main evolutionary axis of opercle shape change reflects movement from a broad and more symmetrically tapered opercle to one that narrows along the distal margin, but with only slight shape change on the proximal margin. We find a trend in opercle shape change along the benthic–pelagic axis, underlining the importance of this axis for diversification in the notothenioid radiation. A major impetus for the study of adaptive radiations is to uncover generalized patterns among different groups, and the evolutionary patterns in opercle shape among notothenioids are similar to those found among other adaptive radiations (three‐spined sticklebacks) promoting the utility of this approach for assessing ecomorphological interactions on a broad scale.  相似文献   

11.
Morphological traits are often genetically and/or phenotypically correlated with each other and such covariation can have an important influence on the evolution of individual traits. The strong positive relationship between brain size and body size in vertebrates has attracted a lot of interest, and much debate has surrounded the study of the factors responsible for the allometric relationship between these two traits. Here, we use comparative analyses of the Tanganyikan cichlid adaptive radiation to investigate the patterns of evolution for brain size and body size separately. We found that body size exhibited recent bursts of rapid evolution, a pattern that is consistent with divergence linked to ecological specialization. Brain weight on the other hand, showed no bursts of divergence but rather evolved in a gradual manner. Our results thus show that even highly genetically correlated traits can present markedly different patterns of evolution, hence interpreting patterns of evolution of traits from correlations in extant taxa can be misleading. Furthermore, our results suggest, contrary to expectations from theory, that brain size does not play a key role during adaptive radiation.  相似文献   

12.
Living amphibians exhibit a diversity of ecologies, life histories, and species‐rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species‐level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well‐supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations.  相似文献   

13.
Theory suggests that sexual traits evolve faster than ecological characters. However, characteristics of a species niche may also influence evolution of sexual traits. Hence, a pending question is whether ecological characters and sexual traits present similar tempo and mode of evolution during periods of rapid ecological divergence, such as adaptive radiation. Here, we use recently developed phylogenetic comparative methods to analyse the temporal dynamics of evolution for ecological and sexual traits in Tanganyikan cichlids. Our results indicate that whereas disparity in ecological characters was concentrated early in the radiation, disparity in sexual traits remained high throughout the radiation. Thus, closely related Tanganyikan cichlids presented higher disparity in sexual traits than ecological characters. Sexual traits were also under stronger selection than ecological characters. In sum, our results suggest that ecological characters and sexual traits present distinct evolutionary patterns, and that sexual traits can evolve faster than ecological characters, even during adaptive radiation.  相似文献   

14.
Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.  相似文献   

15.
An early burst of speciation followed by a subsequent slowdown in the rate of diversification is commonly inferred from molecular phylogenies. This pattern is consistent with some verbal theory of ecological opportunity and adaptive radiations. One often-overlooked source of bias in these studies is that of sampling at the level of whole clades, as researchers tend to choose large, speciose clades to study. In this paper, we investigate the performance of common methods across the distribution of clade sizes that can be generated by a constant-rate birth-death process. Clades which are larger than expected for a given constant-rate branching process tend to show a pattern of an early burst even when both speciation and extinction rates are constant through time. All methods evaluated were susceptible to detecting this false signature when extinction was low. Under moderate extinction, both the [Formula: see text]-statistic and diversity-dependent models did not detect such a slowdown but only because the signature of a slowdown was masked by subsequent extinction. Some models which estimate time-varying speciation rates are able to detect early bursts under higher extinction rates, but are extremely prone to sampling bias. We suggest that examining clades in isolation may result in spurious inferences that rates of diversification have changed through time.  相似文献   

16.
Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character‐taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits. Although these data types are very different, some studies have suggested that they capture common patterns. Nonetheless, the tests employed to support this claim have not explicitly incorporated a phylogenetic framework and may therefore be susceptible to confounding effects due to the presence of common phylogenetic structure. We address this question using the scorpion genus Brachistosternus Pocock 1893 as case study. We make use of a time‐calibrated multilocus molecular phylogeny, and compile discrete and traditional morphometric data sets, both capturing the overall morphology of the organisms. We find that morphospaces derived from these matrices are significantly different, and that the degree of discordance cannot be replicated by simulations of random character evolution. Moreover, we find strong support for contrasting modes of evolution, with discrete characters being congruent with an ‘early burst’ scenario whereas morphometric traits suggest species‐specific adaptations to have driven morphological evolution. The inferred macroevolutionary dynamics are therefore contingent on the choice of character type. Finally, we confirm that metrics of correlation fail to detect these profound differences given common phylogenetic structure in both data sets, and that methods incorporating a phylogenetic framework and accounting for expected covariance should be favoured.  相似文献   

17.
We explored the evolution of morphological integration in the most noteworthy example of adaptive radiation in mammals, the New World leaf‐nosed bats, using a massive dataset and by combining phylogenetic comparative methods and quantitative genetic approaches. We demonstrated that the phenotypic covariance structure remained conserved on a broader phylogenetic scale but also showed a substantial divergence between interclade comparisons. Most of the phylogenetic structure in the integration space can be explained by splits at the beginning of the diversification of major clades. Our results provide evidence for a multiple peak adaptive landscape in the evolution of cranial covariance structure and morphological differentiation, based upon diet and roosting ecology. In this scenario, the successful radiation of phyllostomid bats was triggered by the diversification of dietary and roosting strategies, and the invasion of these new adaptive zones lead to changes in phenotypic covariance structure and average morphology. Our results suggest that intense natural selection preceded the invasion of these new adaptive zones and played a fundamental role in shaping cranial covariance structure and morphological differentiation in this hyperdiverse clade of mammals. Finally, our study demonstrates the power of combining comparative methods and quantitative genetic approaches when investigating the evolution of complex morphologies.  相似文献   

18.
The “early‐burst” model of adaptive radiation predicts an early increase in phenotypic disparity concurrent with lineage diversification. Although most studies report a lack of this coupled pattern, the underlying processes are not identified. The continental radiation of Hemidactylus geckos from Peninsular India includes morphologically diverse species that occupy various microhabitats. This radiation began diversifying ~36 Mya with an early increase in lineage diversification. Here, we test the “early‐burst” hypothesis by investigating the presence of ecomorphs and examining the pattern of morphological diversification in a phylogenetic framework. Two ecomorphs—terrestrial and scansorial species—that vary significantly in body size and toepad size were identified. Unlike the prediction of the “early‐burst” model, we find that disparity in toepad morphology accumulated more recently ~14 Mya and fit the Ornstein‐Ulhenbeck model. Ancestral state reconstruction of the two ecomorphs demonstrates that terrestrial lineages evolved independently at least five times from scansorial ancestors, with the earliest diversification in terrestrial lineages 19–12 Mya. Our study demonstrates a delayed increase in morphological disparity as a result of the evolution of terrestrial ecomorphs. The diversification of terrestrial lineages is concurrent with the establishment of open habitat and grasslands in Peninsular India, suggesting that the appearance of this novel resource led to the adaptive diversification.  相似文献   

19.
Most contemporary studies of adaptive radiation focus on relatively recent and geographically restricted clades. It is less clear whether diversification of ancient clades spanning entire continents is consistent with adaptive radiation. We used novel fossil calibrations to generate a chronogram of Neotropical cichlid fishes and to test whether patterns of lineage and morphological diversification are congruent with hypothesized adaptive radiations in South and Central America. We found that diversification in the Neotropical cichlid clade and the highly diverse tribe Geophagini was consistent with diversity‐dependent, early bursts of divergence followed by decreased rates of lineage accumulation. South American Geophagini underwent early rapid differentiation in body shape, expanding into novel morphological space characterized by elongate‐bodied predators. Divergence in head shape attributes associated with trophic specialization evolved under strong adaptive constraints in all Neotropical cichlid clades. The South American Cichlasomatini followed patterns consistent with constant rates of morphological divergence. Although morphological diversification in South American Heroini was limited, Eocene invasion of Central American habitats was followed by convergent diversification mirroring variation observed in Geophagini. Diversification in Neotropical cichlids was influenced by the early adaptive radiation of Geophagini, which potentially limited differentiation in other cichlid clades.  相似文献   

20.
We present the most extensive examination to date of proposed correlates of species richness. We use rigorous phylogenetic comparative techniques, data for 1,692 mammal species in four clades, and multivariate statistics to test four hypotheses about species richness and compare the evidence for each. Overall, we find strong support for the life-history model of diversification. Species richness is significantly correlated with shorter gestation period in the carnivores and large litter size in marsupials. These traits and short interbirth intervals are also associated with species richness in a pooled analysis of all four clades. Additionally, we find some support for the abundance hypotheses in different clades of mammals: abundance correlates positively with species richness in primates but negatively in microchiropterans. Our analyses provide no evidence that mammalian species richness is associated with body size or degree of sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号