首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
Adaptive responses are probably the most effective long‐term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long‐lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold–dry and warm–wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre‐adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long‐lived clonal plant may have sufficient evolutionary potential to withstand long‐term climate changes through adaptive responses.  相似文献   

2.
Patterns of clinal genetic variation in Drosophila are often characterized after rearing at constant temperatures. However, clinal patterns might change after acclimation if populations differ in their plastic response to fluctuating environments. We studied longevity, starvation and heat knock‐down resistance after development at either constant or fluctuating temperatures in nine Drosophila buzzatii populations collected along an altitudinal gradient in Tenerife, Spain. Flies that developed at fluctuating temperatures had higher stress resistance despite experiencing a slightly lower average temperature than those at constant temperatures. Genetic variation along the gradient was found in both stress‐resistance traits. Because QST values greatly exceeded FST values, genetic drift could not explain this diversification. In general, differences among populations were larger after rearing at fluctuating temperatures, especially in heat knock‐down, for which clinal patterns disappeared when flies were reared at constant temperatures. This result emphasizes the importance of determining whether populations originating from different environments differ in their plastic responses to stress.  相似文献   

3.
Fluctuating environments are expected to select for individuals that have highest geometric fitness over the experienced environments. This leads to the prediction that genetically determined environmental robustness in fitness, and average fitness across environments should be positively genetically correlated to fitness in fluctuating environments. Because quantitative genetic experiments resolving these predictions are missing, we used a full‐sib, half‐sib breeding design to estimate genetic variance for egg‐to‐adult viability in Drosophila melanogaster exposed to two constant or fluctuating temperatures that were above the species’ optimum temperature, during development. Viability in two constant environments (25°C or 30°C) was used to estimate breeding values for environmental robustness of viability (i.e., reaction norm slope) and overall viability (reaction norm elevation). These breeding values were regressed against breeding values of viability at two different fluctuating temperatures (with a mean of 25°C or 30°C). Our results based on genetic correlations show that average egg‐to‐adult viability across different constant thermal environments, and not the environmental robustness, was the most important factor for explaining the fitness in fluctuating thermal environments. Our results suggest that the role of environmental robustness in adapting to fluctuating environments might be smaller than anticipated.  相似文献   

4.
Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within‐clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different‐sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within‐female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment mothers, particularly at 21 °C. In summary, stickleback mothers may have used both TGP and diversified bet‐hedging strategies to cope with the dual stress of ocean warming and environmental uncertainty.  相似文献   

5.
It is often assumed that there is a positive relationship between egg size and offspring fitness. However, recent studies have suggested that egg size has a greater effect on offspring fitness in low‐quality environments than in high‐quality environments. Such observations suggest that mothers may compensate for poor posthatching environments by increasing egg size. In this paper we test whether there is a limit on the extent to which increased egg size can compensate for the removal of posthatching parental care in the burying beetle, Nicrophorus vespilloides. Previous experiments with N. vespilloides suggest that an increased egg size can compensate for a relatively poor environment after hatching. Here, we phenotypically engineered female N. vespilloides to produce large or small eggs by varying the amount of time they were allowed to feed on the carcass as larvae. We then tested whether differences between these groups in egg size translated into differences in larval performance in a harsh postnatal environment that excluded parental care. We found that females engineered to produce large eggs did not have higher breeding success, and nor did they produce larger larvae than females engineered to produce small eggs. These results suggest that there is a limit on the extent to which increased maternal investment in egg size can compensate for a poor posthatching environment. We discuss the implication of our results for a recent study showing that experimental N. vespilloides populations can adapt rapidly to the absence of posthatching parental care.  相似文献   

6.
Coral reef islands are among the most vulnerable environments on Earth to climate change because they are low lying and largely constructed from unconsolidated sediments that can be readily reworked by waves and currents. These sediments derive entirely from surrounding coral reef and reef flat environments and are thus highly sensitive to ecological transitions that may modify reef community composition and productivity. How such modifications – driven by anthropogenic disturbances and on‐going and projected climatic and environmental change – will impact reef island sediment supply and geomorphic stability remains a critical but poorly resolved question. Here, we review the unique ecological–geomorphological linkages that underpin this question and, using different scenarios of environmental change for which reef sediment production responses can be projected, explore the likely resilience of different island types. In general, sand‐dominated islands are likely to be less resilient than those dominated by rubble grade material. However, because different islands typically have different dominant sediment constituents (usually either coral, benthic foraminifera or Halimeda) and because these respond differently to individual ecological disturbances, island resilience is likely to be highly variable. Islands composed of coral sands are likely to undergo major morphological change under most near‐future ecological change scenarios, while those dominated by Halimeda may be more resilient. Islands composed predominantly of benthic foraminifera (a common state through the Pacific region) are likely to exhibit varying degrees of resilience depending upon the precise combination of ecological disturbances faced. The study demonstrates the critical need for further research bridging the ecological–geomorphological divide to understand: (1) sediment production responses to different ecological and environmental change scenarios; and (2) dependant landform vulnerability.  相似文献   

7.
Differing selective pressures on islands versus the mainland may produce alternative evolutionary outcomes among closely related lineages. Conversely, lineages may be constrained to produce similar outcomes in different mainland and island environments, or mainland and island environments may not differ significantly. Among the best‐studied island radiations are Caribbean Anolis lizards. Distinct morphotypes, or ‘ecomorphs’, have been described, and the same ecomorphs have evolved independently on each Greater Antillean island. The mainland Anolis radiation has received much less attention. We use a large morphological data set and a novel phylogenetic hypothesis to show that mainland Anolis did not evolve the same morphotypes as island Anolis, despite some island species being more closely related to mainland species than to island species that share their morphotype. A maximum of four of the six Caribbean ecomorphs were found to exist on the mainland, and just 15 of 123 mainland species are assignable to a Caribbean ecomorph. This result was insensitive to differing taxon samples and alternative phylogenetic hypotheses. Mainland convergence to a Caribbean ecomorph occurs only among species assigned to the grass‐bush ecomorph. Thus, the ecomorphs that have evolved convergently multiple times in the Caribbean have not evolved in parallel on the mainland. These results are consistent with the hypothesis that mainland and island environments offer different selective pressures. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 852–859.  相似文献   

8.
Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently‐wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet‐hedging strategy used by this species.  相似文献   

9.
Nest building is a taxonomically widespread and diverse trait that allows animals to alter local environments to create optimal conditions for offspring development. However, there is growing evidence that climate change is adversely affecting nest‐building in animals directly, for example via sea‐level rises that flood nests, reduced availability of building materials, and suboptimal sex allocation in species exhibiting temperature‐dependent sex determination. Climate change is also affecting nesting species indirectly, via range shifts into suboptimal nesting areas, reduced quality of nest‐building environments, and changes in interactions with nest predators and parasites. The ability of animals to adapt to sustained and rapid environmental change is crucial for the long‐term persistence of many species. Many animals are known to be capable of adjusting nesting behaviour adaptively across environmental gradients and in line with seasonal changes, and this existing plasticity potentially facilitates adaptation to anthropogenic climate change. However, whilst alterations in nesting phenology, site selection and design may facilitate short‐term adaptations, the ability of nest‐building animals to adapt over longer timescales is likely to be influenced by the heritable basis of such behaviour. We urgently need to understand how the behaviour and ecology of nest‐building in animals is affected by climate change, and particularly how altered patterns of nesting behaviour affect individual fitness and population persistence. We begin our review by summarising how predictable variation in environmental conditions influences nest‐building animals, before highlighting the ecological threats facing nest‐building animals experiencing anthropogenic climate change and examining the potential for changes in nest location and/or design to provide adaptive short‐ and long‐term responses to changing environmental conditions. We end by identifying areas that we believe warrant the most urgent attention for further research.  相似文献   

10.
Abstract When costs and benefits of raising sons and daughters differ between environments, parents may be selected to modify their investment into male and female offspring. In two recently colonized environments, breeding female house finches (Carpodacus mexicanus) modified the sex and growth of their offspring in relation to the order in which eggs were laid in a clutch. Here we show that, in both populations, these maternal effects strongly biased frequency distribution of tarsus size of fully grown males and females and ultimately produced population divergence in this trait. Although in each population, male and female offspring show a wide range of growth patterns, maternal modifications of sex‐ratio in relation to egg‐laying order resulted in under‐representation of the morphologies that were selected against and over‐representation of morphologies that were favoured by the local selection on juveniles. The result of these maternal adjustments was fast phenotypic change in sexual size dimorphism within and between populations. Maternal manipulations of offspring morphologies may be especially important at the initial stages of population establishment in the novel environments and may have facilitated recent colonization of much of North America by the house finch.  相似文献   

11.
In variable environments, selection should favor generalists that maintain fitness across a range of conditions. However, costs of adaptation may generate fitness trade‐offs and lead to some compromise between specialization and generalization that maximizes fitness. Here, we evaluate the evolution of specialization and generalization in 20 populations of Drosophila melanogaster experimentally evolved in constant and variable thermal environments for 3 years. We developed genotypes from each population at two temperatures after which we measured fecundity across eight temperatures. We predicted that constant environments would select for thermal specialists and that variable environments would select for thermal generalists. Contrary to our predictions, specialists and generalists did not evolve in constant and spatially variable environments, respectively. However, temporal variation produced a type of generalist that has rarely been considered by theoretical models of developmental plasticity. Specifically, genotypes from the temporally variable selective environment were more fecund across all temperatures than were genotypes from other environments. These patterns suggest certain allelic effects and should inspire new directions for modeling adaptation to fluctuating environments.  相似文献   

12.
Ecological conditions such as nutrition can change genetic covariances between traits and accelerate or slow down trait evolution. As adaptive trait correlations can become maladaptive following rapid environmental change, poor or stressful environments are expected to weaken genetic covariances, thereby increasing the opportunity for independent evolution of traits. Here, we demonstrate the differences in genetic covariance among multiple behavioral and morphological traits (exploration, aggression, and body weight) between southern field crickets (Gryllus bimaculatus) raised in favorable (free‐choice) versus stressful (protein‐deprived) nutritional environments. We also quantify the extent to which differences in genetic covariance structures contribute to the potential for the independent evolution of these traits. We demonstrate that protein‐deprived environments tend to increase the potential for traits to evolve independently, which is caused by genetic covariances that are significantly weaker for crickets raised on protein‐deprived versus free‐choice diets. The weakening effects of stressful environments on genetic covariances tended to be stronger in males than in females. The weakening of the genetic covariance between traits under stressful nutritional environments was expected to facilitate the opportunity for adaptive evolution across generations. Therefore, the multivariate gene‐by‐environment interactions revealed here may facilitate behavioral and morphological adaptations to rapid environmental change.  相似文献   

13.
Natural environments are rarely static; rather selection can fluctuate on timescales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm‐regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency‐dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments, coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency‐dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.  相似文献   

14.
Ectotherm thermal physiology is frequently used to predict species responses to changing climates, but for amphibians, water loss may be of equal or greater importance. Using physical models, we estimated the frequency of exceeding the thermal optimum (Topt) or critical evaporative water loss (EWLcrit) limits, with and without shade‐ or water‐seeking behaviours. Under current climatic conditions (2002–2012), we predict that harmful thermal (>Topt) and hydric (>EWLcrit) conditions limit the activity of amphibians during ~70% of snow‐free days in sunny habitats. By the 2080s, we estimate that sunny and dry habitats will exceed one or both of these physiological limits during 95% of snow‐free days. Counterintuitively, we find that while wet environments eliminate the risk of critical EWL, they do not reduce the risk of exceeding Topt (+2% higher). Similarly, while shaded dry environments lower the risk of exceeding Topt, critical EWL limits are still exceeded during 63% of snow‐free days. Thus, no single environment that we evaluated can simultaneously reduce both physiological risks. When we forecast both temperature and EWL into the 2080s, both physiological thresholds are exceeded in all habitats during 48% of snow‐free days, suggesting that there may be limited opportunity for behaviour to ameliorate climate change. We conclude that temperature and water loss act synergistically, compounding the ecophysiological risk posed by climate change, as the combined effects are more severe than those predicted individually. Our results suggest that predictions of physiological risk posed by climate change that do not account for water loss in amphibians may be severely underestimated and that there may be limited scope for facultative behaviours to mediate rapidly changing environments.  相似文献   

15.
Whereas sexual reproduction may facilitate adaptation to complex environments with many biotic interactions, simplified environments are expected to favour asexual reproduction. In agreement with this, recent studies on invertebrates have shown a prevalence of asexual species in agricultural (simplified) but not in natural (complex) environments. We investigated whether the same correlation between reproductive mode and habitat can be found in different populations within one species. The parasitoid wasp Tetrastichus coeruleus forms an ideal model to test this question, since it occurs both in natural and agricultural environments. Further, we investigated whether Wolbachia infection caused parthenogenesis in female‐biased populations. In contrast to the general pattern, in Dutch and French natural areas, we found Wolbachia‐infected, highly female‐biased populations that reproduce parthenogenetically. In contrast, populations on Dutch agricultural fields were not infected with Wolbachia, showed higher frequencies of males and reproduced sexually. However, we also found a female‐only, Wolbachia‐infected population on agricultural fields in north‐eastern United States. All Wolbachia‐infected populations were infected with the same Wolbachia strain. At this moment, we do not have a convincing explanation for this deviation from the general pattern of ecology and reproductive mode. It may be that asparagus agricultural fields differ from other crop fields in ways that favour sexual reproduction. Alternatively, Wolbachia may manipulate life history traits in its host, resulting in different fitness pay‐offs in different habitats. The fixation of Wolbachia in the United States populations (where the species was introduced) may be due to founder effect and lack of uninfected, sexual source populations.  相似文献   

16.
The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness‐related traits can be heterogeneous over time. We estimated selection of life‐history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north‐western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north‐western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north‐western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models.  相似文献   

17.
Cooperation can be maintained if cooperative behaviours are preferentially directed towards other cooperative individuals. Tag‐based cooperation (greenbeards) – where cooperation benefits individuals with the same tag as the actor – is one way to achieve this. Tag‐based cooperation can be exploited by individuals who maintain the specific tag but do not cooperate, and selection to escape this exploitation can result in the evolution of tag diversity. We tested key predictions crucial for the evolution of cheat‐mediated tag diversity using the production of iron‐scavenging pyoverdine by the opportunistic pathogen, Pseduomonas aeruginosa as a model system. Using two strains that produce different pyoverdine types and their respective cheats, we show that cheats outcompete their homologous pyoverdine producer, but are outcompeted by the heterologous producer in well‐mixed environments. As a consequence, co‐inoculating two types of pyoverdine producer and one type of pyoverdine cheat resulted in the pyoverdine type whose cheat was not present having a large fitness advantage. Theory suggests that in such interactions, cheats can maintain tag diversity in spatially structured environments, but that tag‐based cooperation will be lost in well‐mixed populations, regardless of tag diversity. We saw that when all pyoverdine producers and cheats were co‐inoculated in well‐mixed environments, both types of pyoverdine producers were outcompeted, whereas spatial structure (agar plates and compost microcosms), rather than maintaining diversity, resulted in the domination of one pyoverdine producer. These results suggest cheats may play a more limited role in the evolution of pyoverdine diversity than predicted.  相似文献   

18.
The adaptability of organisms to novel environmental conditions depends on the amount of genetic variance present in the population as well as on the ability of individuals to adjust their phenotype through phenotypic plasticity. Here, we investigated the phenotypic plasticity induced by a single generation's exposure to three different temperature regimes with respect to several life‐history and stress‐resistance traits in a natural population of Drosophila simulans. We studied a constant as well as a predictably and an unpredictably fluctuating temperature regime. We found high levels of phenotypic plasticity among all temperature regimes, suggesting a strong influence of both temperature fluctuations and their predictability. Increased heat tolerance was observed for flies developed in both types of fluctuating thermal environments compared with flies developed in a constant environment. We suggest that this was due to beneficial hardening when developing in either fluctuating temperature environment. To our surprise, flies that developed in constant and predictably changing environments were similar to each other in most traits when compared to flies from the unpredictably fluctuating environment. The unpredictably changing thermal environment imposed the most stressful condition, resulting in the lowest performance for stress‐related traits, even though the absolute temperature changes never exceeded that of the predictably fluctuating environment. The overall decreased stress resistance of flies in the unpredictably fluctuating environment may be the consequence of maladaptive phenotypic plasticity in this setting, indicating that the adaptive value of plasticity depends on the predictability of the environment.  相似文献   

19.
Phenotypic plasticity can help organisms cope with variation in their current environment, including temperature variation, but not all environments are equally variable. In the least variable or extreme environments, plasticity may no longer be used. In this case, the plasticity could be lost altogether, or it could persist with either the same or an altered reaction norm, depending on factors such as the plasticity's costs. In the pipevine swallowtail caterpillar (Battus philenor), I tested for changes in two forms of heat‐avoidance plasticity, colour change and refuge‐seeking behaviour, across the species’ range in the United states, including the cooler eastern parts of its range where colour change has not been observed and is unlikely to be needed. I found that both heat‐avoidance behaviour and colour change persisted in all surveyed populations. Indeed, the reaction norm for colour change remained nearly unaltered, whereas the threshold for refuge‐seeking only changed slightly across populations. These results suggest that the costs of these plastic traits are low enough for them to be maintained by whatever minimal gene flow the population receives. I show that plasticity can be maintained unaltered in populations where it is not used and discuss the potential consequences of this persistence for both the ecology and evolution of plasticity.  相似文献   

20.
The potential for the pre‐zygotic plant growth environment to play a role in determining seed longevity was investigated for a species that inhabits arid to semi‐arid Australia. Seed longevity is particularly important for wild populations in fluctuating environments because the longer a seed‐lot is able to survive in the soil seed bank the more likely it is to buffer the population from unpredictable environments. Thus Wahlenbergia tumidifructa plants received wet or dry soil moisture within a warm or cool glasshouse until flowering. Seeds subsequently produced by flowers that opened on the day that plants were moved to a common environment were collected at maturity and longevity assessed by controlled ageing at 60% relative humidity and 45°C. Mean seed longevity was similar for seeds produced by plants that grew in warm‐wet, warm‐dry and cool‐dry conditions (P50 of about 20 days), but extended for plants in cool‐wet conditions (P50 = 41.7 days). Cool temperatures resulted in seeds with a wider distribution of lifespans (σ = 20 days) than warm conditions (σ = 12 days); the large σ caused the extended P50 for cool‐wet plants, but not cool‐dry as a result of a concomitant reduction in initial seed germination (Ki). After moving to the common environment, all plants generated new vegetative material, which went on to produce seeds with similar longevity (P50 approx. 20 days) irrespective of original environment. Visible phenotypic responses of the parent to environmental conditions correlated with longevity and quality parameters of the progeny seeds, suggesting that a parental effect modified seed longevity. Our study provides novel empirical data showing that environmental conditions expected under climate change scenarios may potentially cause seed longevity to decline for a species that inhabits arid to semi‐arid Australia. These negative impacts on population buffering may weaken the storage effect mechanism of species coexistence in fluctuating environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号