首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Phragmites or Common Reed (Phragmites australis) is a natural component of many wetlands but can be highly invasive. Phragmites is encroaching into important mudflat habitat areas of the Ramsar‐listed Seaford Wetlands (Melbourne, Victoria), which are critical for migratory birds. We assessed the efficacy of slashing as a means of controlling Phragmites by establishing twelve 5 m × 5 m quadrats within mature Phragmites reed beds and slashing half of them. The response of Phragmites to slashing was highly variable and dependent on the elevation (i.e. subsequent flooding) of the slashed quadrats. Phragmites regrowth was minimal in lower‐lying quadrats which were wholly inundated for several months each of the following two years (to a mean depth of ~22 cm). In contrast, in quadrats of higher elevation, which were mostly only partially or shallowly inundated, Phragmites recovered almost completely within 10 months. In quadrats that were not slashed there was no change in Phragmites cover (i.e. it remained ~100%) irrespective of flooding extent. It is suspected that prolonged flooding above the height of the remaining stubble is necessary to prevent recovery. Thus, slashing may be a successful means of controlling Phragmites when low‐lying areas are targeted and these are subsequently flooded to a sufficient depth (e.g. >20 cm) for at least several months.  相似文献   

2.
Substantive encroachment of Phragmites australis (common reed) occurred since the 1970s in the Wilderness estuarine lakes, a National Park and Ramsar site. Cutting of reeds in late summer as a means of controlling reed encroachment was investigated under three different inundation regimes, termed ‘wet zone’ (permanently inundated), ‘moist zone’ (infrequently inundated) and ‘dry zone’ (rarely inundated). The effects of a single annual cut were furthermore compared to those of two successive annual cuts. Without cutting, wet zones had thinner and shorter, but more abundant reeds than drier zones. Cutting in dry and moist zones resulted after one year in more, but shorter and thinner reeds, whereas in wet zones reeds were almost eliminated. After two years, reeds in wet zones had not recovered from the first annual cut. In moist and dry zones, a second annual cut did not result in amplified detrimental effects on reeds. Throughout the experiment, moisture zone was the factor with the largest effect, cutting had the second largest impact, and inter-annual variation was relatively unimportant. We have demonstrated that cutting alone has minimal long-term effect on above-ground reed biomass, whereas reed growth and survivorship can be strongly suppressed through cutting in late-summer in conjunction with inundation with moderately saline water (5.0–7.5 g kg−1). Cut reeds must remain completely inundated for at least a four-week period, or else emerging shoots should be re-cut below the water level. Cut material should be removed from the treatment site. Whenever possible, cutting and inundation should be undertaken to coincide with periods when salinity levels of surface waters are higher. It is foreseen that reed management in the Wilderness Lakes would have positive effects on other biota by countering progression towards single species domination of wetland plant communities and reinstating exposed sandbanks which are extensively utilised by resident and migratory waterbirds.  相似文献   

3.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

4.

Questions

The exceptional occurrence of tall rain forest patches on foggy coastal mountaintops, surrounded by extensive xerophytic shrublands, suggests an important role of plant–plant interactions in the origin and persistence of these patches in semi‐arid Chile. We asked whether facilitation by shrubs can explain the growth and survival of rain forest tree species, and whether shrub effects depend on the identity of the shrub species itself, the drought tolerance of the tree species and the position of shrubs in regard to wind direction.

Location

Open area–shrubland–forest matrix, Fray Jorge Forest National Park, Chile.

Methods

We recorded survival after 12 years of a ~3600 tree saplings plantation (originally ~30‐cm tall individuals) of Aextoxicon punctatum, Myrceugenia correifolia and Drimys winteri placed outside forests, beneath the shrub Baccharis vernalis, and in open (shrub‐free) areas. We assessed the effects of neighbouring shrubs and soil humidity on survival and growth along a gradient related to the direction of fog movement.

Results

B. vernalis had a clear facilitative effect on tree establishment and survival since, after ~12 years, saplings only survived beneath the shrub canopy. Long‐term survival strongly depended on tree species identity, drought tolerance and position along the soil moisture gradient, with higher survival of A. punctatum (>35%) and M. correifolia (>14%) at sites on wind‐ and fog‐exposed shrubland areas. Sites occupied by the shrub Aristeguietia salvia were unsuitable for trees, presumably due to drier conditions than under B. vernalis.

Conclusions

Interactions between shrubs and fog‐dependent tree species in dry areas revealed a strong, long‐lasting facilitation effect on planted tree's survival and growth. Shrubs acted as benefactors, providing sites suitable for tree growth. Sapling mortality in the shrubland interior was caused by lower soil moisture, the consequence of lower fog loads in the air and thus insufficient facilitation. While B. vernalis was a key ecosystem engineer (nurse) and intercepted fog water that dripped to trees planted underneath, drier sites with A. salvia were unsuitable for trees. Consequently, nurse effects related to water input are strongly site and species specific, with facilitation by shrubs providing a plausible explanation for the initiation of forest patches in this semi‐arid landscape.  相似文献   

5.
Two experiments were conducted to determine the establishment success of reintroducing Microlaena stipoides (pātītī, weeping rice grass) into existing high‐fertility grassland on the volcanic cones of the Auckland Isthmus. The first experiment monitored the survival and development of juveniles planted in a factorial design including two planting densities, two slope classes and two aspects across three cones. Plant survival during establishment was consistently over 90%. Maximum M. stipoides cover after 2 years (>80%) was achieved on north‐facing steep slopes (>25°) at the greater planting density (40 plants/m2). However, results were particularly idiosyncratic to specific cone/topographical combinations. The second experiment, on a flat site on one cone, monitored the survival and development of juveniles planted across four post‐planting treatments designed to suppress resident vegetation recovery. Plant survival after 6 months was relatively low (50%), and none of the treatments achieved greater than 5% cover of M. stipoides after 1 year. The chosen post‐planting treatments were unable to suppress vigorous recovery of competitive exotic grasses on a moist fertile site. Overall, juvenile planting was shown to be a potentially successful method of Microlaena establishment and could restore indigenous dominance to exotic grassland in this environment, but individual site factors and the high cost of establishment must be considered.  相似文献   

6.
Effects of salinity and cutting on the development of Phragmites australis   总被引:1,自引:0,他引:1  
The effects of increased salinity and cutting the above ground biomass on the growth of Phragmites australis were evaluated by investigating four experimental reed stands grown in outdoor tanks. Two stands were treated with 30 salinity and the other two stands with freshwater; one stand of each treatment was cut to 20 cm during the second growing season. Growth conditions were observed until all the plants were dead at the end of the second year. The number of shoots emerged from the freshwater-treated stand was about 70% higher than that of the saltwater-treated stand. The number of shoots emerged from cut plant stands were markedly lower than uncut stands. The average shoot height was negatively affected by salinity and shoots that emerged after cutting further decreased in height. The average number of leaves on a shoot was not significantly affected by salinity, but reduced by cutting in both treatments. Leaf length, width and the distance between leaves were decreased by both salinity and cutting. In the freshwater-treated uncut stand more than 50% of the shoots formed panicles, but this proportion was reduced to 6% by salinity, to 15% by cutting, and to 0% by the combination of salinity and cutting. This study showed again that salinity reduces the growth of aboveground components. The growth, however, was most severely retarded by cutting combined with salinity, which has many implications for better management of P. australis stands.  相似文献   

7.
Alpine plants often occupy diverse habitats within a similar elevation range, but most research on local adaptation in these plants has focused on elevation gradients. In testing for habitat‐related local adaptation, local effects on seed quality and initial plant growth should be considered in designs that encompass multiple populations and habitats. We tested for local adaptation across alpine habitats in a morphologically variable daisy species, Brachyscome decipiens, in the Bogong High Plains in Victoria, Australia. We collected seed from different habitats, controlled for maternal effects through initial seed size estimates, and characterized seedling survival and growth in a field transplant experiment. We found little evidence for local adaptation for survival or plant size, based on three adaptation measures: Home versus Away, Local versus Foreign, and Sympatric versus Allopatric (SA). The SA measure controlled for planting site and population (site‐of‐origin) effects. There were significant differences due to site‐of‐origin and planting site effects. An important confounding factor was the size of plants directly after transplantation of seedlings, which had a large impact on subsequent seedling survival and growth. Initial differences in plant width and height influenced subsequent survival across the growing season but in opposing directions: wide plants had higher survival, but tall plants had lower survival. In an additional controlled garden experiment at Cranbourne Royal Botanic Gardens, site‐of‐origin effects detected in the field experiments disappeared under more benign homogeneous conditions. Although B. decipiens from different source areas varied significantly when grown across a range of alpine habitats, these differences did not translate into a local or habitat‐related fitness advantage. This lack of local advantage may signal weak past selection, and/or weak adaptive transgeneration (plasticity) effects.  相似文献   

8.
Hetero‐and conspecific interactions, nutrient availability, climate, habitat heterogeneity, and disturbances can generate variation and spatial patterns of femaleness in plants. We assessed whether year, site, plant size, plant density, and canopy area of conspecific neighbors influenced the expression and spatial aggregation of femaleness in Croton aff. wagneri, a monoecious shrub from dry shrublands of the inter‐Andean valleys in Ecuador. We georeferenced in two sites (1,700 and 1,400 m.a.s.l) in five 10 × 10 m plots, within each site, the position of each Croton reproductive plant during first part of flowering season in two years, and measured their height, length, and width. The femaleness index of each plant was determined by the number of female and male buds and flowers. Plant density was determined for each plot, along with the number of neighbors and the summed canopy area of conspecific neighbors (at 1.0, 2.0, and 2.5 m radius, and the five closest plants) from each focal plant. Croton´s femaleness at the lower elevation site was greater than at the higher elevation site and increased with plant size and with canopy of the closest five neighbors. Soil at the lower elevation site had higher temperatures and lower water content. Aggregate patterns of femaleness were found in more plots at the lower elevation site. Our results indicate that location, plant size, and canopies of conspecific neighbors of Croton can affect femaleness and its aggregation and support the hypothesis that femaleness can be influenced by facilitative interactions. Abstract in Spanish is available with online material.  相似文献   

9.
The outcomes of invasive plant removal efforts are influenced by management decisions, but are also contingent on the uncontrolled spatial and temporal context of management areas. Phragmites australis is an aggressive invader that is intensively managed in wetlands across North America. Treatment options have been understudied, and the ecological contingencies of management outcomes are poorly understood. We implemented a 5‐year, multi‐site experiment to evaluate six Phragmites management treatments that varied timing (summer or fall) and types of herbicide (glyphosate or imazapyr) along with mowing, plus a nonherbicide solarization treatment. We evaluated treatments for their influence on Phragmites and native plant cover and Phragmites inflorescence production. We assessed plant community trajectories and outcomes in the context of environmental factors. The summer mow, fall glyphosate spray treatment resulted in low Phragmites cover, high inflorescence reduction, and provided the best conditions for native plant recruitment. However, returning plant communities did not resemble reference sites, which were dominated by ecologically important perennial graminoids. Native plant recovery following initial Phragmites treatments was likely limited by the dense litter that resulted from mowing. After 5 years, Phragmites mortality and native plant recovery were highly variable across sites as driven by hydrology. Plots with higher soil moisture had greater reduction in Phragmites cover and more robust recruitment of natives compared with low moisture plots. This moisture effect may limit management options in semiarid regions vulnerable to water scarcity. We demonstrate the importance of replicating invasive species management experiments across sites so the contingencies of successes and failures can be better understood.  相似文献   

10.
Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), is one of the worst upland exotic weeds in Florida, USA. Foreign exploration for natural enemies led to the discovery of a pit‐galling psyllid, Calophya latiforceps Burckhardt (Hemiptera: Calophyidae), in the state of Bahia, Brazil, in 2010. Crawlers of C. latiforceps stimulate the formation of galls on the leaves of S. terebinthifolia resulting in leaf discoloration and in some cases leaf abscission. To determine whether C. latiforceps is a safe candidate for biological control of Sterebinthifolia, host specificity and the presence of selected plant pathogens were examined. Adult oviposition, gall formation, and adult survival of C. latiforceps were examined on 89 plant species under no‐choice and choice conditions. We found that C. latiforceps laid eggs on plants in seven families; however, crawlers stimulated gall formation and completed development to adult only on S. terebinthifolia. All crawlers on non‐target plants died, likely due to starvation caused either by the absence of a feeding stimulus or by a hypersensitive plant response. Under no‐choice conditions, 10% of adults lived for 19 days on the target weed, but adult survival was reduced to <3 days on non‐target plants. Choice testing revealed that females preferred to oviposit on S. terebinthifolia compared to non‐target plants. Molecular methods and indicator host inoculations did not detect the presence of ‘Candidatus Liberibacter solanacearum’, ‘Ca. L. asiaticus’, ‘Ca. L. americanus’, ‘Ca. L. africanus’, or plant viruses in adult C. latiforceps. We conclude that releasing C. latiforceps in the USA will have extremely low risk to non‐target plants, and provides another tool for the management of S. terebinthifolia.  相似文献   

11.
  • Heavy metal allocation and the mechanism(s) of metal sequestration in different clonal organs, micro‐domains and subcellular structures has not been systematically studied for rhizomatous perennial plants. It is thus pertinent to investigate knowledge of the speciation and distribution characteristics of Cu in Phragmites australis to elucidating the mobility of metals in wetland plants after their uptake via root systems so as to facilitate development of strategies to enhance Cu tolerance.
  • This study investigated the distributions of Cu in P. australis root, stem and leaf using ICP‐MS, synchrotron‐based X‐ray micro‐fluorescence and X‐ray absorption spectroscopy, then evaluated the effects of Cu on cellular structure and ultrastructure via transmission electron microscopy.
  • The results indicate a clear preferential localisation of Cu in the roots as compared with the shoots (stems and leaves). The intensity of Cu in the vascular bundles was higher than that in the surrounding epidermis and the endodermis and parenchyma outside the medullary cavity. The dominant chemical form of Cu in P. australis was similar to Cu citrate.
  • The results suggest that although Cu can be easily transported into the vascular tissues in roots and stems via Cu citrate, most of the metal absorbed by plants is retained in the roots because if its high binding to the cell wall, thus preventing metal translocation to aerial parts of the plants. Therefore, P. australis showed a high capacity to accumulate Cu in roots, being therefore a suitable species for phytostabilisation interventions.
  相似文献   

12.
Wof‐Washa forest is one of the few remaining dry Afromontane forests in the central plateau of Ethiopia. Woody species composition, structure and regeneration patterns of this forest were studied to generate information essential for formulating feasible management options for the forest. Vegetation data were collected from 64 quadrats of size 20 m × 20 m, 10 m × 10 m and 5 m × 5 m for tree/shrub, sapling and seedling, respectively, laid systematically along transects. A total of 62 woody species belonging to 54 genera and 40 families were recorded. Rosaceae was the most diverse family with five (12.5%) species followed by Anacardiaceae, Euphorbiaceae and Myrsinaceae with three (7.5%) species each. Tree/shrub, sapling and seedling densities were 699, 1178 and 7618.7 individuals/ha. About 56.7% of the importance value index was contributed by Juniperus procera, Maytenus arbutifolia, Podocarpus falcatus and Ilex mitis. Vegetation classification resulted in five plant communities: Ilex mitis – Maytenus obscura, Galiniera saxifraga – Maesa lanceolata, Juniperus procera – Erica arborea, Podocapus falcatus – Allophylus abyssinicus and Pittosporum viridiflorum – Polycias fulva community types. Regeneration status of all the woody plant species was categorized as ‘Good’ (28%), ‘Fair’ (19%), ‘Poor’ (8%), ‘None’ (40%) and ‘New’ (5%).  相似文献   

13.
The biodiversity of coal slurry ponds can be inhibited, at least in part, by dense stands of Phragmites australis. In this study, we demonstrate that species richness can be increased in coal slurry ponds if the dominant species (P. australis and Typha latifolia) are removed and that underwater herbivory simulated by cutting will kill emergents. The study was conducted in the greenhouse and the field in both flooded and drawndown conditions. Stems of plants of P. australis and T. latifolia were cut in a greenhouse and the cut plants of both species showed a decline in survivorship (25 and 42% survival, respectively) whereas all uncut plants survived. In a reclaimed coal pond at Pyramid State Park, Illinois, neither P. australis nor T. latifolia survived cutting underwater, but all of the uncut plants survived. Regrowth measured as total biomass of stems was less among flooded versus freely drained plants (0.3 and 2.6 g biomass, respectively). Cut versus uncut plants, combining freely drained and flooded, had less below-ground biomass (99.4 and 254.4 g, respectively). In the greenhouse study, oxygen levels in rhizomes subsequent to cutting were measured using an oxygen electrode and millivolt meter. Oxygen levels in P. australis were lower in cut versus uncut plants both in flooded (15.0 vs. 16.3% ambient O2, respectively) and freely drained conditions (14.5 vs. 15.0%, ambient O2, respectively). Similar responses to cutting were demonstrated by T. latifolia. In an unreclaimed coal slurry pond with monospecific stands of P. australis, plant species richness increased in cut plots as compared to uncut plots (29 vs. 2 species, respectively) between March and September, 1995. This study demonstrated that species richness can be increased in coal ponds by mechanical cutting and this potentially by herbivory; however, the additional species were mostly exotics.  相似文献   

14.
Leaf‐cutting ants (LCA) are polyphagous and dominant herbivores throughout the Neotropics that carefully select plant individuals or plant parts to feed their symbiotic fungus. Although many species‐specific leaf traits have been identified as criteria for the choice of food plants, the factors driving intraspecific herbivory patterns in LCA are less well studied. Herein, we evaluate whether or not drought‐stressed native plants are a preferred food source using free‐living colonies of two leaf‐cutting ants, Atta sexdens L. (Hymenoptera: Formicidae: Attini), in combination with five plant species, Ocotea glomerata Nees (Lauraceae), Lecythis lurida S. A. Mori (Lecythidaceae), Miconia prasina DC (Melastomataceae), Tovomita brevistaminea Engl. (Clusiaceae), and Tapirira guianensis Aubl. (Anacardiaceae), and Atta cephalotes L., in combination with two plant species, O. glomerata and Licania tomentosa Benth. (Chrysobalanaceae). In dual‐choice bioassays, ants removed about three times more leaf area from drought‐stressed plants compared to control plants. Both leaf‐cutting ant species consistently preferred drought‐stressed plants for all species tested, except T. guianensis. The mean acceptability index – expressing the preference for one of two options on a scale of 0 to 1 – of drought‐stressed plants ranged from 0.65 to 0.86 across plant species, and the preference did not differ significantly among the tested plant species. Our results suggest that selection of drought‐stressed individuals is a general feature of food plant choice by leaf‐cutting ants irrespective of ant or plant species. As human‐modified forest assemblages across the Neotropics are increasingly prone to drought stress, the documented preference of Atta for drought‐stressed plants may have tangible ecological implications.  相似文献   

15.
Plant–plant interactions are among the fundamental processes that shape structure and functioning of arid and semi‐arid plant communities. Despite the large amount of studies that have assessed the relationship between plant–plant interactions (i.e., facilitation and competition) and diversity, often researchers forget a third kind of interaction, known as allelopathy. We examined the effect of plant–plant interactions of three dominant species: the perennial grass Lygeum spartum, the allelopathic dwarf shrub Artemisia herba‐alba, and the nurse shrub Salsola vermiculata, on plant diversity and species composition in a semi‐arid ecosystem in NE Spain. Specifically, we quantified the interaction outcome (IO) based on species co‐occurrence, we analyzed diversity by calculation of the individual species–area relationship (ISAR), and compositional changes by calculation of the Chao‐Jaccard similarity index. We found that S. vermiculata had more positive IO values than L. spartum, and A. herba‐alba had values between them. Lygeum spartum and A. herba‐alba acted as diversity repellers, whereas S. vermiculata acted as a diversity accumulator. As aridity increased, A. herba‐alba transitioned from diversity repeller to neutral and S. vermiculata transitioned from neutral to diversity accumulator, while L. spartum remained as diversity repeller. Artemisia herba‐alba had more perennial grass species in its local neighborhood than expected by the null model, suggesting some tolerance of this group to its “chemical neighbor”. Consequently, species that coexist with A. herba‐alba were very similar among different A. herba‐alba individuals. Our findings highlight the role of the nurse shrub S. vermiculata as ecosystem engineer, creating and maintaining patches of diversity, as well as the complex mechanism that an allelopathic plant may have on diversity and species assemblage. Further research is needed to determine the relative importance of allelopathy and competition in the overall interference of allelopathic plants.  相似文献   

16.
芦苇与入侵植物互花米草的光合特性比较   总被引:27,自引:5,他引:22  
赵广琦  张利权  梁霞 《生态学报》2005,25(7):1604-1611
以上海崇明东滩湿地外来入侵植物互花米草与本地种芦苇为研究对象,对它们的光合特性进行了比较研究,结果表明:(1)与芦苇相比,互花米草具有更高的表观量子效率(AQY)、CO2羟化效率(CE)和最大净光合速率(pmax);(2)生长季节初期,互花米草午间时段的光合、气孔导度和蒸腾速率均高于芦苇,各指标与光、温的变化基本一致;(3)互花米草的净光合速率曲线呈“单峰”型,测定指标在强光合辐射、高温条件下迅速上升,芦苇则表现出明显的“午休”现象;(4)在生长季节初期(5月份)和活跃期(9月份),互花米草的净光合速率显著高于芦苇,而在生长季节后期(11月份)则低于芦苇。该项研究有利于解释互花米草生长迅速,生产力高,竞争性强的生理生态学特性。  相似文献   

17.
Biomechanical properties can be important parameters in resistance of plants to herbivorous insects. As plants age, however, there can be dramatic changes in physical defenses that can then influence their susceptibility to insect herbivores. We measured changes in leaf biomechanical properties during ontogeny of Poa species and the relationship of these changes to the development of a generalist herbivore, the black cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), was investigated. Larvae were reared on two representative age classes, i.e., young (<60 days after planting) and old (>1 year after planting), of foliage in laboratory assays. Foliage generally reaches a peak fracture force between 80 and 109 days after planting depending on grass type. Foliage from old plants was significantly tougher than that of young plants, and black cutworm larvae reared on foliage from young plants gained significantly (ca. four times) more weight than those fed on foliage from old Poa plants. In addition, fracture force has a negative relationship with black cutworm development. Plant fiber, particularly neutral detergent fiber accounted for 65 and 46% of the variation in fracture force and larval development, respectively. These results provide additional insight into how plant ontogeny influences physical defenses to an insect herbivore in a grass system. Likewise, this is seemingly the first study to suggest a mechanism for host plant resistance to black cutworm. Plant fiber may be a useful trait to explore in plant improvement programs in which black cutworm is a primary pest (e.g., managed turfgrass).  相似文献   

18.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

19.
Encroachment of woody plants into grasslands is a global phenomenon that has substantial impacts on pastoral productivity and ecosystem services. Over the past half century, pastoralists and land management agencies have explored various options to control woody plants in order to improve ecosystem services in shrub‐encroached grasslands. We examined the effectiveness of controlling the encroachment of the shrub Caragana microphylla into grassland in Inner Mongolia, China. We cut and removed all of the aboveground biomass from 450 shrubs, predicting that the effectiveness of this technique to control shrubs would depend on shrub morphology. Specifically, we expected that larger shrubs with more biomass would be more difficult to kill by cutting than smaller shrubs. A year after treatment, we found that cutting killed only 11% of the 450 treated shrubs, and of these, three‐quarters of the locations that they occupied reverted to grasses and one‐quarter to bare soil. Shrubs that survived the cutting treatment produced more stems and leaf biomass, and therefore had a greater leaf to stem ratio. Shrubs that died after cutting had a lower crown area and basal area, and less stem biomass than shrubs that resprouted within 12 months of cutting. There were no effects of shrub height on the fate of treated shrubs. Cutting had no effect on understory plant cover or richness, but reproductive plants were taller under shrubs that were not cut. Overall, our study showed that removing aboveground shrub biomass by cutting is an ineffective technique for “restoring” the original grassland community unless shrubs are very small. Strategic targeting of small shrubs would be a more effective technique for controlling the spread of C. microphylla in the long term.  相似文献   

20.
Invasive plants, such as Phragmites australis, are a global threat to plant diversity and are commonly controlled using herbicide management. The purpose of this study was to evaluate the plant community response 6–10 years after large‐scale herbicide management to remove Phragmites from Great Lakes coastal wetlands along the shores of western Lake Erie. Vegetation surveys were conducted in nine wetlands undergoing herbicide management and four unmanaged Phragmites‐dominated wetlands. The relative percent cover of Phragmites was dramatically lower in the managed (1.3%) compared to unmanaged wetlands (93.0%; p < 0.001), although relative percent cover of other non‐natives following herbicide management averaged 39.2% (ranging from 6.4 to 67.6%). The cover‐weighted floristic quality index was significantly higher in managed wetlands (p < 0.01), with the highest indices (12.4–17.0) at sites that received prescribed fire after herbicide treatment (p < 0.05). Species richness and diversity were significantly higher in managed wetlands (p < 0.001); however, there was no significant difference between wetlands treated only with herbicide and those treated with herbicide and prescribed fire. Our results indicate that herbicide management is effective in reducing Phragmites and improving floristic quality over timescales of 6–10 years. However, continued spot‐treatment and management of new invasive species may be required, and the return of high‐quality plant communities may be unrealistic in the study region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号