首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional ecological theory predicts that specialisation can promote speciation; hence, recently derived species are specialists. However, an alternative view is that new species have broad niches, which become narrower and specialised over time. Here, we test these hypotheses using avian brood parasites and three different measures of host specialisation. Brood parasites provide an ideal system in which to investigate the evolution of specialisation, because some exploit more than 40 host species and others specialise on only one. We find that young brood parasite species are smaller and specialise on a narrower range of host sizes, as expected, if specialisation is linked with the generation of new species. Moreover, we show that highly virulent parasites are more specialised, supporting findings in other host–parasite systems. Finally, we demonstrate that different measures of specialisation can lead to different conclusions, and specialisation indices should be designed taking into account the biology of each system.  相似文献   

2.
Parasites often jump to and become established in a new host species. There is much evidence that the probability of such host shifts decreases with increasing phylogenetic distance between donor and recipient hosts, but the consequences of such preferential host switching remain little explored. We develop a computational model to investigate the dynamics of parasite host shifts in the presence of this phylogenetic distance effect. In this model, a clade of parasites evolves on an evolving clade of host species where parasites can cospeciate with their hosts, switch to new hosts, speciate within hosts or become extinct. Our model predicts that host phylogenies are major determinants of parasite distributions across trees. In particular, we predict that trees consisting of few large clades of host species and those with fast species turnover should harbor more parasites than trees with many small clades and those that diversify more slowly. Within trees, large clades are predicted to exhibit a higher fraction of infected species than small clades. We discuss our results in the light of recent cophylogenetic studies in a wide range of host–parasite systems.  相似文献   

3.
Parasites exploit an inherently patchy resource, their hosts, which are discrete entities that may only be available for infection within a relatively short time window. However, there has been little consideration of how heterogeneities in host availability may affect the phenotypic or genotypic composition of parasite populations or how parasites may evolve to cope with them. Here we conduct a selection experiment involving an entomopathogenic nematode (Steinernema feltiae) and show for the first time that the infection rate of a parasite can evolve rapidly to maximize the chances of infecting within an environment characterized by the rate of host availability. Furthermore, we show that the parasite's infection rate trades off with other fitness traits, such as fecundity and survival. Crucially, the outcome of competition between strains with different infection strategies depends on the rate of host availability; frequently available hosts favor "fast" infecting nematodes, whereas infrequently available hosts favor "slow" infecting nematodes. A simple evolutionarily stable strategy (ESS) analysis based on classic epidemiological models fails to capture this behavior, predicting instead that the fastest infecting phenotype should always dominate. However, a novel model incorporating more realistic, discrete bouts of host availability shows that strain coexistence is highly likely. Our results demonstrate that heterogeneities in host availability play a key role in the evolution of parasite life-history traits and in the maintenance of phenotypic variability. Parasite life-history strategies are likely to evolve rapidly in response to changes in host availability induced by disease management programs or by natural dynamics in host abundance. Incorporating parasite evolution in response to host availability would therefore enhance the predictive ability of current epidemiological models of infectious disease.  相似文献   

4.
Parasites can vary in the number of host species they infect, a trait known as “host specificity”. Here we quantify phylogenetic signal—the tendency for closely related species to resemble each other more than distantly related species—in host specificity of avian haemosporidian parasites (genera Plasmodium, Haemoproteus and Leucocytozoon) using data from MalAvi, the global avian haemosporidian database. We used the genetic data (479 base pairs of cytochrome b) that define parasite lineages to produce genus level phylogenies. Combining host specificity data with those phylogenies revealed significant levels of phylogenetic signal while controlling for sampling effects; phylogenetic signal was higher when the phylogenetic diversity of hosts was taken into account. We then tested for correlations in the host specificity of pairs of sister lineages. Correlations were generally close to zero for all three parasite genera. These results suggest that while the host specificity of parasite sister lineages differ, larger clades may be relatively specialised or generalised.  相似文献   

5.

Aim

Identifying barriers that govern parasite community assembly and parasite invasion risk is critical to understand how shifting host ranges impact disease emergence. We studied regional variation in the phylogenetic compositions of bird species and their blood parasites (Plasmodium and Haemoproteus spp.) to identify barriers that shape parasite community assembly.

Location

Australasia and Oceania.

Methods

We used a data set of parasite infections from >10,000 host individuals sampled across 29 bioregions. Hierarchical models and matrix regressions were used to assess the relative influences of interspecies (host community connectivity and local phylogenetic distinctiveness), climate and geographic barriers on parasite local distinctiveness and composition.

Results

Parasites were more locally distinct (co‐occurred with distantly related parasites) when infecting locally distinct hosts, but less distinct (co‐occurred with closely related parasites) in areas with increased host diversity and community connectivity (a proxy for parasite dispersal potential). Turnover and the phylogenetic symmetry of parasite communities were jointly driven by host turnover, climate similarity and geographic distance.

Main conclusions

Interspecies barriers linked to host phylogeny and dispersal shape parasite assembly, perhaps by limiting parasite establishment or local diversification. Infecting hosts that co‐occur with few related species decreases a parasite's likelihood of encountering related competitors, perhaps increasing invasion potential but decreasing diversification opportunity. While climate partially constrains parasite distributions, future host range expansions that spread distinct parasites and diminish barriers to host shifting will likely be key drivers of parasite invasions.  相似文献   

6.
The range of hosts a pathogen infects (host specificity) is a key element of disease risk that may be influenced by both shared phylogenetic history and shared ecological attributes of prospective hosts. Phylospecificity indices quantify host specificity in terms of host relatedness, but can fail to capture ecological attributes that increase susceptibility. For instance, similarity in habitat niche may expose phylogenetically unrelated host species to similar pathogen assemblages. Using a recently proposed method that integrates multiple distances, we assess the relative contributions of host phylogenetic and functional distances to pathogen host specificity (functional–phylogenetic host specificity). We apply this index to a data set of avian malaria parasite (Plasmodium and Haemoproteus spp.) infections from Melanesian birds to show that multihost parasites generally use hosts that are closely related, not hosts with similar habitat niches. We also show that host community phylogenetic ß‐diversity (Pßd) predicts parasite Pßd and that individual host species carry phylogenetically clustered Haemoproteus parasite assemblages. Our findings were robust to phylogenetic uncertainty, and suggest that phylogenetic ancestry of both hosts and parasites plays important roles in driving avian malaria host specificity and community assembly. However, restricting host specificity analyses to either recent or historical timescales identified notable exceptions, including a ‘habitat specialist’ parasite that infects a diversity of unrelated host species with similar habitat niches. This work highlights that integrating ecological and phylogenetic distances provides a powerful approach to better understand drivers of pathogen host specificity and community assembly.  相似文献   

7.
Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity.  相似文献   

8.
Parasites are known to manipulate the behavior of their hosts in ways that increase their probability of transmission. Theoretically, different evolutionary routes can lead to host manipulation, but much research has concentrated on the ‘manipulation hypothesis’ sensu stricto. Among the arsenal of host compensatory responses, however, some seem to be compatible with the parasite objectives. Another way for parasites to achieve transmission, therefore, would be to trigger specific host compensatory responses. In order to explore the conditions favoring this manipulative strategy, we developed a simulation model in which parasites may affect their hosts' behavior by using two nonmutually exclusive strategies: a manipulation sensu stricto strategy and a strategy based on the exploitation of host compensatory responses. Our model predicts that the exploitation of host compensatory responses can be evolutionary stable when the alteration improves the susceptibility to predation by final hosts without compromising host survival during parasite development. Inversely, when the behavioral modification resulting from a compensatory response conflicts with the host's interest we expect parasites to use both strategies. From this result, we conclude that the strategy based on the exploitation of host compensatory responses should be more common among nontrophically transmitted parasites. Furthermore, our findings indicate that the transmission rate of parasites in a definitive host is highest when each of the two strategies affects different traits, which supports the hypothesis that host manipulation is a multidimensional phenomenon in which each altered trait contributes independently to increase parasite transmission efficiency.  相似文献   

9.
Parasites that are molecular mimics express proteins which resemble host proteins. This resemblance facilitates immune evasion because the immune molecules with the specificity to react with the parasite also cross‐react with the host's own proteins, and these lymphocytes are rare. Given this advantage, why are not most parasites molecular mimics? Here we explore potential factors that can select against molecular mimicry in parasites and thereby limit its occurrence. We consider two hypotheses: (1) molecular mimics are more likely to induce autoimmunity in their hosts, and hosts with autoimmunity generate fewer new infections (the “costly autoimmunity hypothesis”); and (2) molecular mimicry compromises protein functioning, lowering the within‐host replication rate and leading to fewer new infections (the “mimicry trade‐off hypothesis”). Our analysis shows that although both hypotheses may select against molecular mimicry in parasites, unique hallmarks of protein expression identify whether selection is due to the costly autoimmunity hypothesis or the mimicry trade‐off hypothesis. We show that understanding the relevant selective forces is necessary to predict how different medical interventions will affect the proportion of hosts that experience the different infection types, and that if parasite evolution is ignored, interventions aimed at reducing infection‐induced autoimmunity may ultimately fail.  相似文献   

10.
Patterns and likely processes connected with evolution of host specificity in congeneric monogeneans parasitizing fish species of the Cyprinidae were investigated. A total of 51 Dactylogyrus species was included. We investigated (1) the link between host specificity and parasite phylogeny; (2) the morphometric correlates of host specificity, parasite body size, and variables of attachment organs important for host specificity; (3) the evolution of morphological adaptation, that is, attachment organ; (4) the determinants of host specificity following the hypothesis of specialization on more predictable resources considering maximal body size, maximal longevity, and abundance as measures of host predictability; and (5) the potential link between host specificity and parasite diversification. Host specificity, expressed as an index of host specificity including phylogenetic and taxonomic relatedness of hosts, was partially associated with parasite phylogeny, but no significant contribution of host phylogeny was found. The mapping of host specificity into the phylogenetic tree suggests that being specialist is not a derived condition for Dactylogyrus species. The different morphometric traits of the attachment apparatus seem to be selected in connection with specialization of specialist parasites and other traits favored as adaptations in generalist parasites. Parasites widespread on several host species reach higher abundance within hosts, which supports the hypothesis of ecological specialization. When separating specialists and generalists, we confirmed the hypothesis of specialization on a predictable resource; that is, specialists with larger anchors tend to live on fish species with larger body size and greater longevity, which could be also interpreted as a mechanism for optimizing morphological adaptation. We demonstrated that ecology of host species could also be recognized as an important determinant of host specificity. The mapping of morphological characters of the attachment organ onto the parasite phylogenetic tree reveals that morphological evolution of the attachment organ is connected with host specificity in the context of fish relatedness, especially at the level of host subfamilies. Finally, we did not find that host specificity leads to parasite diversification in congeneric monogeneans.  相似文献   

11.
Understanding how parasites are transmitted to new species is of great importance for human health, agriculture and conservation. However, it is still unclear why some parasites are shared by many species, while others have only one host. Using a new measure of ‘phylogenetic host specificity’, we find that most primate parasites with more than one host are phylogenetic generalists, infecting less closely related primates than expected. Evolutionary models suggest that phylogenetic host generalism is driven by a mixture of host–parasite cospeciation and lower rates of parasite extinction. We also show that phylogenetic relatedness is important in most analyses, but fails to fully explain patterns of parasite sharing among primates. Host ecology and geographical distribution emerged as key additional factors that influence contacts among hosts to facilitate sharing. Greater understanding of these factors is therefore crucial to improve our ability to predict future infectious disease risks.  相似文献   

12.
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.  相似文献   

13.
Hemiparasitic plants have green leaves, but extract water and solutes from neighbouring plants. It is still poorly understood how different host plants in communities contribute to parasite performance, as species that are good hosts in single‐host experiments may not necessarily be preferred hosts in mixtures. We grew the root hemiparasite Rhinanthus alectorolophus (Orobanchaceae) together with each of 13 host species (experiment 1) and with 15 different four‐species mixtures of these hosts (experiment 2) that differed in the number of legumes and of host functional groups. Parasites profited from mixtures including more legumes and from mixtures including different host functional groups. Some host species and mixtures were very tolerant of parasitism and supported large parasites without being strongly suppressed in their own growth, but the suppression of a species in the single‐host experiment did not explain the suppression of a species in a host mixture. We thus calculated for each host species an index of the difference in suppression between the two experiments which may be related to host use in a mixture. Host quality (mean parasite biomass with a host species) in the single‐host experiment could explain 64% of the variation in parasite biomass with a host mixture when it was weighted by the proportion of the host species in the mixture without the parasite and by the suppression difference index. Our results suggest that plant species which are the best hosts in single‐host experiments are not always those used most strongly by a parasite growing with a mixture. Together with the finding that hemiparasites benefit from a mixed diet based on hosts from different functional groups this suggests that parasites prefer certain host species to obtain a mixed diet.  相似文献   

14.
Hosts and their parasites have strong ecological and evolutionary relationships, with hosts representing habitats and resources for parasites. In the present study, we use approaches developed to evaluate the statistical dependence of species trait values on phylogenetic relationships to determine whether host–parasite relationships (i.e. parasite infections) are contingent on host phylogeny. If host–parasite relationships are contingent on the ability of hosts to provide habitat or resources to parasites, and if host phylogeny is an effective surrogate for among‐host variation in habitat and resource quality, host–parasite relationships should evince phylogenetic signals (i.e. be contingent on host phylogeny). Because the strength of ecological relationships between parasites and their hosts may affect the likelihood of phylogenetic signals occurring in host–parasite relationships, we hypothesized that (1) host specificity would be positively correlated with the strength of phylogenetic signals and (2) the strength of phylogenetic signals will be greater for parasites that rely more on their host throughout their life cycle. Analyses were conducted for ectoparasites from tropical bats and for ectoparasites, helminths, and coccidians from desert rodents. Phylogenetic signals were evaluated for parasite presence and for parasite prevalence. The frequency of phylogenetic signal occurrence was similar for parasite presence and prevalence, with a signal detected in 24–27% of cases at the species level and in 67% and 15% of cases at the genus level for parasites of bats and rodents, respectively. No differences in signal strength or the likelihood of detecting a signal existed between groups of parasites. Phylogenetic signal strength was correlated with host specificity, suggesting that mechanisms increasing host specificity also increase the likelihood of a phylogenetic signal in host use by parasites. Differences in the transmission mode did not affect signal strength or the likelihood of detecting a signal, indicating that variation in host switching opportunities associated with the transmission mode does not affect signal strength.  相似文献   

15.
Parasite lineages commonly diverge when host lineages diverge. However, when large clades of hosts and parasites are analyzed, some cases suggest host switching as another major diversification mechanism. The first step in host switching is the appearance of a parasite on an atypical host, or “straggling.” We analyze the conditions associated with straggling events. We use five species of colonially nesting seabirds from the Galapagos Archipelago and two genera of highly specific ectoparasitic lice to examine host switching. We use both genetic and morphological identification of lice, together with measurements of spatial distribution of hosts in mixed breeding colonies, to test: (1) effects of local host community composition on straggling parasite identity; (2) effects of relative host density within a mixed colony on straggling frequency and parasite species identity; and (3) how straggling rates are influenced by the specifics of louse attachment. Finally, we determine whether there is evidence of breeding in cases where straggling adult lice were found, which may indicate a shift from straggling to the initial stages of host switching. We analyzed more than 5,000 parasite individuals and found that only ~1% of lice could be considered stragglers, with ~5% of 436 host individuals having straggling parasites. We found that the presence of the typical host and recipient host in the same locality influenced straggling. Additionally, parasites most likely to be found on alternate hosts are those that are smaller than the typical parasite of that host, implying that the ability of lice to attach to the host might limit host switching. Given that lice generally follow Harrison's rule, with larger parasites on larger hosts, parasites infecting the larger host species are less likely to successfully colonize smaller host species. Moreover, our study supports the general perception that successful colonization of a novel host is extremely rare, as we found only one nymph of a straggling species, which may indicate successful reproduction.  相似文献   

16.
Host specificity has a major influence on a parasite's ability to shift between human and animal host species. Yet there is a dearth of quantitative approaches to explore variation in host specificity across biogeographical scales, particularly in response to the varying community compositions of potential hosts. We built a global dataset of intermediate host associations for nine of the world's most widespread helminth parasites (all of which infect humans). Using hierarchical models, we asked if realised parasite host specificity varied in response to regional variation in the phylogenetic and functional diversities of potential host species. Parasites were recorded in 4–10 zoogeographical regions, with some showing considerable geographical variation in observed versus expected host specificity. Parasites generally exhibited the lowest phylogenetic host specificity in regions with the greatest variation in prospective host phylogenetic diversity, namely the Neotropical, Saharo‐Arabian and Australian regions. Globally, we uncovered notable variation in parasite host shifting potential. Observed host assemblages for Hydatigera taeniaeformis and Hymenolepis diminuta were less phylogenetically diverse than expected, suggesting limited potential to spillover into unrelated hosts. Host assemblages for Echinococcus granulosus, Mesocestoides lineatus and Trichinella spiralis were less functionally diverse than expected, suggesting limited potential to shift across host ecological niches. By contrast, Hyd. taeniaeformis infected a higher functional diversity of hosts than expected, indicating strong potential to shift across hosts with different ecological niches. We show that the realised phylogenetic and functional diversities of infected hosts are determined by biogeographical gradients in prospective host species pools. These findings emphasise the need to account for underlying species diversity when assessing parasite host specificity. Our framework to identify variation in realised host specificity is broadly applicable to other host–parasite systems and will provide key insights into parasite invasion potential at regional and global scales.  相似文献   

17.
Abstract 1. In ant social parasitism, the process by which parasite–host systems evolved and the types of invasion mechanisms parasites use are being debated. Emery’s rule, for example, states that social parasites are the closest relatives to their hosts. The present study uses previously published data to test whether Emery’s rule applies equally to all parasitism types (i.e. xenobiosis, temporary, dulosis, and inquilinism). In addition, this study also investigates other links between parasite–host relatedness and host biology, which has implications for understanding the invasion mechanisms used by certain parasites. 2. We find that xenobiotic parasites typically use distantly‐related host species that are of at least medium colony size. Temporary parasites often have multiple host species that are very closely related to the parasite and hosts with medium‐size colonies. Dulotic parasites frequently have multiple host species that are slightly less related and of any size. Lastly, inquiline parasites tend to have a single, very closely related, host species with medium‐size colonies. 3. Parasites tend to be more closely related to host species if they have a single host species or when the host has a large colony size. In contrast, parasites with multiple host species or hosts of small colony size tend to be less related to their hosts. 4. This study is the first to examine trends in ant social parasitism across all known parasite species. Our meta‐analysis shows that Emery’s rule applies to inquilinism and temporary parasitism, but not to dulosis and xenobiosis. Our results also suggest that both parasitism type and parasite–host relatedness predict the number of hosts and host colony size. It may be that a chemical mimicry mechanism allows invasion of large host colonies, but requires close relatedness of parasite and host, and concentration on a single host species.  相似文献   

18.
We used phylogenetic analyses of cytochrome b sequences of malaria parasites and their avian hosts to assess the coevolutionary relationships between host and parasite lineages. Many lineages of avian malaria parasites have broad host distributions, which tend to obscure cospeciation events. The hosts of a single parasite or of closely related parasites were nonetheless most frequently recovered from members of the same host taxonomic family, more so than expected by chance. However, global assessments of the relationship between parasite and host phylogenetic trees, using Component and ParaFit, failed to detect significant cospeciation. The event-based approach employed by TreeFitter revealed significant cospeciation and duplication with certain cost assignments for these events, but host switching was consistently more prominent in matching the parasite tree to the host tree. The absence of a global cospeciation signal despite conservative host distribution most likely reflects relatively frequent acquisition of new hosts by individual parasite lineages. Understanding these processes will require a more refined species concept for malaria parasites and more extensive sampling of parasite distributions across hosts. If parasites can disperse between allopatric host populations through alternative hosts, cospeciation may not have a strong influence on the architecture of host-parasite relationships. Rather, parasite speciation may happen more often in conjunction with the acquisition of new hosts followed by divergent selection between host lineages in sympatry. Detailed studies of the phylogeographic distributions of hosts and parasites are needed to characterize these events.  相似文献   

19.
Host specificity in parasites can be explained by spatial isolation from other potential hosts or by specialization and speciation of specific parasite species. The first assertion is based on allopatric speciation, the latter on differential lifetime reproductive success on different available hosts. We investigated the host specificity and cophylogenetic histories of four sympatric European bat species of the genus Myotis and their ectoparasitic wing mites of the genus Spinturnix. We sampled >40 parasite specimens from each bat species and reconstructed their phylogenetic COI trees to assess host specificity. To test for cospeciation, we compared host and parasite trees for congruencies in tree topologies. Corresponding divergence events in host and parasite trees were dated using the molecular clock approach. We found two species of wing mites to be host specific and one species to occur on two unrelated hosts. Host specificity cannot be explained by isolation of host species, because we found individual parasites on other species than their native hosts. Furthermore, we found no evidence for cospeciation, but for one host switch and one sorting event. Host‐specific wing mites were several million years younger than their hosts. Speciation of hosts did not cause speciation in their respective parasites, but we found that diversification of recent host lineages coincided with a lineage split in some parasites.  相似文献   

20.
The level of host specificity of blood-sucking invertebrates may have both ecological and evolutionary implications for the parasites they are transmitting. We used blood meals from wild-caught blackflies for molecular identification of parasites and hosts to examine patterns of host specificity and how these may affect the transmission of avian blood parasites of the genus Leucocytozoon . We found that five different species of ornithophilic blackflies preferred different species of birds when taking their blood meals. Of the blackflies that contained avian blood meals, 62% were infected with Leucocytozoon parasites, consisting of 15 different parasite lineages. For the blackfly species, there was a significant association between the host width (measured as the genetic differentiation between the used hosts) and the genetic similarity of the parasites in their blood meals. The absence of similar parasite in blood meals from blackflies with different host preferences is interpreted as a result of the vector–host associations. The observed associations between blackfly species and host species are therefore likely to hinder parasites to be transmitted between different host-groups, resulting in ecologically driven associations between certain parasite lineages and hosts species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号