首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Investment in male function should often yield diminishing fitness returns, subjecting the evolution of male phenotypes to substantial constraints. In plants, the subdivision of male function via the gradual presentation of pollen might minimize these constraints by preventing the saturation of receptive stigmas. Here, we report on an investigation of (1) patterns of investment in male function by plants in hermaphroditic (monoecious) and dioecious populations of Sagittaria latifolia, and (2) patterns of siring success by males versus hermaphrodites in experimental mating arrays. We show that in natural populations, males from dioecious populations had greater investment in male function than hermaphrodites in monoecious populations. However, as a proportion of total flower production, males presented substantially fewer flowers at once than hermaphrodites. In comparison with hermaphrodites, therefore, males prolonged the period over which they presented pollen. In mating arrays comprised of females, males, and hermaphrodites, siring success by males increased linearly with flower production. This finding is consistent with the existence of a linear gain curve for male function in S. latifolia and supports the idea that the gradual deployment of male function enables plants to avoid diminishing returns on the investment in male function.  相似文献   

2.
  相似文献   

3.
    
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.  相似文献   

4.
Males and females of dioecious plants often differ in morphological, physiological and life‐history traits, probably as a result of their different requirements for reproduction. We found that the growth and reproductive effort of individuals of the dioecious herb Mercurialis annua depended on whether males or females had been growing in the soil previously. This suggests that males and females of M. annua differentially modify the soil in which they are growing. Our study indicates that sexual dimorphism in dioecious plants can give rise to increased environmental heterogeneity as a consequence of sex‐specific niche modification.  相似文献   

5.
1. American Kestrel ( Falco sparverius ) nestlings are sexually dimorphic, with daughters larger than sons. The larger daughters have an advantage during sibling competition for food in excess of their higher per capita food requirements, and we predicted that parents would reduce this competitive disparity by differentially enhancing the growth of sons, specifically by laying them in larger eggs.
2. In a captive breeding population, eggs producing sons were significantly larger than eggs producing daughters; laying order effects were controlled.
3. The influence of sibling egg size ratios on post-natal size relationships persisted through the nesting period, providing parents with a tool to manipulate size-related phenomena in their offspring.  相似文献   

6.
    
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

7.
    
Background and AimsPlant reproductive traits are widely understood to be responsive to the selective pressures exerted by pollinators, but there is also increasing evidence for an important role for antagonists such as herbivores in shaping these traits. Many dioecious species show leaky sex expression, with males and females occasionally producing flowers of the opposite sex. Here, we asked to what extent leakiness in sex expression in Mercurialis annua (Euphorbiaceae) might also be plastically responsive to simulated herbivory. This is important because enhanced leakiness in dioecious populations could lead to a shift in both the mating system and in the conditions for transitions between combined and separate sexes.MethodsWe examined the effect of simulated herbivory on the sexual expression of males and females of M. annua in two experiments in which different levels of simulated herbivory led to enhanced leakiness in both sexes.Key ResultsWe showed that leaky sex expression in both males and females of the wind-pollinated dioecious herb M. annua is enhanced in response to simulated herbivory, increasing the probability for and the degree of leakiness in both sexes. We also found that leakiness was greater in larger females but not in larger males.ConclusionsWe discuss hypotheses for a possible functional link between herbivory and leaky sex expression, and consider what simulated herbivory-induced leakiness might imply for the evolutionary ecology of plant reproductive systems, especially the breakdown of dioecy and the evolution of hermaphroditism.  相似文献   

8.
The study of sexually antagonistic (SA) traits remains largely limited to dioecious (separate sex), mobile animals. However, the occurrence of sexual conflict is restricted neither by breeding system (the mode of sexual reproduction, e.g. dioecy or hermaphroditism) nor by sessility. Here, we synthesize how variation in breeding system can affect the evolution and expression of intra- and inter-locus sexual conflicts in plants and animals. We predict that, in hermaphrodites, SA traits will (i) display lower levels of polymorphism; (ii) respond more quickly to selection; and (iii) involve unique forms of interlocus conflict over sex allocation, mating roles and selfing rates. Explicit modelling and empirical tests in a broader range of breeding systems are necessary to obtain a general understanding of the evolution of SA traits.  相似文献   

9.
    
The nutritional requirements of Drosophila have mostly been studied for development and reproduction, but the minimal requirements for adult male and female flies for lifespan have not been established. Following development on a complete diet, we find substantial sex difference in the basic nutritional requirement of adult flies for full length of life. Relative to females, males require less of each nutrient, and for some nutrients that are essential for development, adult males have no requirement at all for lifespan. The most extreme (and surprising) sex differences were that chronic cholesterol and vitamin deficiencies had no effect on the lifespan of adult males, but they greatly decreased lifespan in females. Female oogenesis rather than chromosomal karyotype and mating status is the key cause of this gender difference in life‐sustaining nutritional requirements. These data are important to the way we understand the mechanisms by which diet modifies lifespan.  相似文献   

10.
    
We studied the relationship between inflorescence size and male fitness in the andromonoecious lily Zigadenus paniculatus, using experimentally manipulated inflorescences to eliminate possible correlations between flower number, resource availability, and other floral traits. Allozyme markers were used to determine the siring success of large versus small plants in 14 arrays of plants, each array containing five large and five small plants. The inflorescence size of small plants was held constant both within and among arrays; the size of large plants was held constant within an array but was varied among arrays. Large plants sired more than half the seeds in 12 of the 14 arrays, and significantly more than half in six of these 12. However, in eight of the arrays, large plants sired significantly fewer seeds than expected on the basis of their size advantage. Furthermore, there was no significant relationship between relative size and relative siring success in comparisons among arrays. A maximum-likelihood model estimated that 28% of seeds were sired by imported pollen, with 95% confidence limits of 13% and 50%. Within these limits, high import rates tended to mask the relative success of large plants in several arrays. These results suggest that the evolution of inflorescence size in Z. paniculatus is at least partly driven by selection for increased male success, assuming genetic variation for flower number. However, the data also support a growing body of evidence that estimates of male fitness in plants can be highly variable. We discuss the sources of this variability and the possible effects of inflorescence design on the relationship between inflorescence size and fitness.  相似文献   

11.
    
Aims Sex allocation in plants is often plastic, enabling individuals to adjust to variable environments. However, the predicted male-biased sex allocation in response to low resource conditions has rarely been experimentally tested in hermaphroditic plants. In particular, it is unknown whether distal flowers in linear inflorescences show a larger shift to male allocation relative to basal flowers when resources are reduced. In this study, we measure position-dependent plasticity of floral sex allocation within racemes of Aconitum gymnandrum in response to reduced resource availability.Methods Using a defoliation treatment in the field applied to potted plants from a nested half-sibling design, we examined the effects of the treatment, flower position, family and their interactions.Important findings Allocation to male function increased with more distal flower position, while female allocation either did not change with position or declined at the most distal flowers. Defoliation significantly reduced the mass of both the androecium and gynoecium, but not anther number or carpel number. Gynoecial mass declined more strongly with defoliation than did androecial mass, resulting in a significant increase in the androecium/gynoecium ratio as predicted by sex allocation theory. Plastic responses of androecium mass and gynoecium mass were affected by flower position, with less mass lost in basal flowers, but similar plastic magnitude in both sexual traits across flower position lead to consistent variation in the androecium/gynoecium ratio along the inflorescence. A significant treatment*paternal family interaction for the androecium/gynoecium ratio is evidence for additive genetic variation for plastic floral sex allocation, which means that further evolution of allocation can occur.  相似文献   

12.
    
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

13.
14.
    
Indirect genetic effects (IGEs) describe the effect of the genes of social partners on the phenotype of a focal individual. Here, we measure indirect genetic effects using the “coefficient of interaction” (Ψ) to test whether Ψ evolved between Drosophila melanogaster and D. simulans. We compare Ψ for locomotion between ethanol and nonethanol environments in both species, but only D. melanogaster utilizes ethanol ecologically. We find that while sexual dimorphism for locomotion has been reversed in D. simulans, there has been no evolution of social effects between these two species. What did evolve was the interaction between genotype‐specific Ψ and the environment, as D. melanogaster varies unpredictably between environments and D. simulans does not. In this system, this suggests evolutionary lability of sexual dimorphism but a conservation of social effects, which brings forth interesting questions about the role of the social environment in sexual selection.  相似文献   

15.
Sex allocation (SA) models are traditionally based on the implicit assumption that hermaphroditism must meet criteria that make it stable against transition to dioecy. This, however, puts serious constraints on the adaptive values that SA can attain. A transition to gonochorism may, however, be impossible in many systems and therefore realized SA in hermaphrodites may not be limited by conditions that guarantee stability against dioecy. We here relax these conditions and explore how sexual selection on male accessory investments (e.g. a penis) that offer a paternity benefit affects the evolutionary stable strategy SA in outcrossing, simultaneous hermaphrodites. Across much of the parameter space, our model predicts male allocations well above 50 per cent. These predictions can help to explain apparently ‘maladaptive’ hermaphrodite systems.  相似文献   

16.
    
Melanosuchus niger is a caimanine alligatorid widely distributed in the northern region of South America. This species has been the focus of several ecological, genetic and morphological studies. However, morphological studies have generally been limited to examination of interspecific variation among extant species of South American crocodylians. Here, we present the first study of intraspecific variation in the skull of M. niger using a two‐dimensional geometric morphometric approach. The crania of 52 sexed individuals varying in size were analysed to quantify shape variation and to assign observed shape changes to different types of intraspecific variation, that is, ontogenetic variation and sexual dimorphism. Most of the variation in this species is ontogenetic variation in snout length, skull depth, orbit size and the width of the postorbital region. These changes are correlated with bite force performance and probably dietary changes. However, a comparison with previous functional studies reveals that functional adaptations during ontogeny seem to be primarily restricted to the postrostral region, whereas rostral shape changes are more related to dietary shifts. Furthermore, the skulls of M. niger exhibit a sexual dimorphism, which is primarily size‐related. The presence of non‐size‐related sexual dimorphism has to be tested in future examinations.  相似文献   

17.
    
Hetero‐and conspecific interactions, nutrient availability, climate, habitat heterogeneity, and disturbances can generate variation and spatial patterns of femaleness in plants. We assessed whether year, site, plant size, plant density, and canopy area of conspecific neighbors influenced the expression and spatial aggregation of femaleness in Croton aff. wagneri, a monoecious shrub from dry shrublands of the inter‐Andean valleys in Ecuador. We georeferenced in two sites (1,700 and 1,400 m.a.s.l) in five 10 × 10 m plots, within each site, the position of each Croton reproductive plant during first part of flowering season in two years, and measured their height, length, and width. The femaleness index of each plant was determined by the number of female and male buds and flowers. Plant density was determined for each plot, along with the number of neighbors and the summed canopy area of conspecific neighbors (at 1.0, 2.0, and 2.5 m radius, and the five closest plants) from each focal plant. Croton´s femaleness at the lower elevation site was greater than at the higher elevation site and increased with plant size and with canopy of the closest five neighbors. Soil at the lower elevation site had higher temperatures and lower water content. Aggregate patterns of femaleness were found in more plots at the lower elevation site. Our results indicate that location, plant size, and canopies of conspecific neighbors of Croton can affect femaleness and its aggregation and support the hypothesis that femaleness can be influenced by facilitative interactions. Abstract in Spanish is available with online material.  相似文献   

18.
    
Sexual selection and the ornaments that inform such choices have been extensively studied, particularly from a phenotypic perspective. Although more is being revealed about the genetic architecture of sexual ornaments, much still remains to be discovered. The comb of the chicken is one of the most widely recognized sexual ornaments, which has been shown to be correlated with both fecundity and bone allocation. In this study, we use a combination of multiple intercrosses between White Leghorn populations and wild‐derived Red Junglefowl to, first, map quantitative trait loci (QTL) for bone allocation and, second, to identify expression QTL that correlate and colocalize with comb mass. These candidate quantitative genes were then assessed for potential pleiotropic effects on bone tissue and fecundity traits. We identify genes that correlate with both relative comb mass and bone traits suggesting a combination of both pleiotropy and linkage mediates gene regulatory variation in these traits.  相似文献   

19.
Although species with both male and female sexual functionsare often dichotomized into simultaneous and sequential hermaphrodites,many simultaneous hermaphrodites also exhibit sequential changesin sex allocation. In a field experiment using one such species,the gobiid fish, Lythrypnus dalli, female-biased individualsreallocated to male function in relation to their relative bodysize: consistent with the sizeadvantage hypothesis, large femaleswere more likely to reallocate and large fish had the highestspawningrates. Individuals, despite internal allocation to bothsexual functions, adopted only one behavioral gender. Behavioralmales had higher reproductive rates than behavioral females,and laboratory experiments showed that females preferred tomate with large males. Behavioral males grew more rapidly anddid notdiffer from behavioral females in survivorship. In addition,individuals who adopted male behavior but did not receive eggsin their nests maintained high levels of female tissue, whereasmales that received eggs did not. Laboratory experiments showedthat, unlike most hermaphroditic animals, L. dalli canchangeallocation either from ‘female’ to ‘male’or from ‘male’ to ‘female’. Thus, L.dalli shares haracteristics of both sequential and simultaneoushermaphrodites. Simultaneous hermaphroditism maybe maintained,in this species, to facilitate rapid sex change from femaleto male and to retain flexibility o that unsuccessful malescan revert to reproduction as females.  相似文献   

20.
    
Although a negative covariance between parasite load and sexually selected trait expression is a requirement of few sexual selection models, such a covariance may be a general result of life‐history allocation trade‐offs. If both allocation to sexually selected traits and to somatic maintenance (immunocompetence) are condition dependent, then in populations where individuals vary in condition, a positive covariance between trait expression and immunocompetence, and thus a negative covariance between trait and parasite load, is expected. We test the prediction that parasite load is generally related to the expression of sexual dimorphism across two breeding seasons in a wild salamander population and show that males have higher trematode parasite loads for their body size than females and that a key sexually selected trait covaries negatively with parasite load in males. We found evidence of a weaker negative relationship between the analogous female trait and parasite infection. These results underscore that parasite infection may covary with expression of sexually selected traits, both within and among species, regardless of the model of sexual selection, and also suggest that the evolution of condition dependence in males may affect the evolution of female trait expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号