首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To test whether functional homogenization of bird communities is promoted by anthropogenic landscape transformation, using specialization and habitat preference indices that account for the multidimensionality of niches. Location Catalonia, north‐east Iberian Peninsula. Methods We used data on bird species occurrences and landscape features in 2834 1‐km2 squares. Three orthogonal landscape gradients, which were taken as niche dimensions, were defined by means of principal components analysis (PCA). Specialization and habitat preference indices were created for 103 terrestrial bird species on the basis of their frequency of occurrence variation along the landscape gradients. These indices, together with species rarity, were then averaged for bird communities. We then analysed the patterns of variation of communities’ mean specialization, mean rarity and mean habitat preference values along a gradient of agricultural–forest habitat mosaics. Results Wherever we found a significant variation in the degree of specialization along the agricultural–forest gradient, agricultural habitats held more specialized bird communities than did forest ones and bore, on average, rarer species. Thus, results contradicted our initial hypothesis that humanized areas would bear more functionally homogenized bird communities. Higher α‐diversity values tended to be associated with generalist communities and with those having rarer species. Main conclusions Estimations of bird community specialization for different niche dimensions can behave differently along certain landscape gradients, and some of these differences can be explained by the variation of mean habitat preferences. Thus, we argue that a multidimensional approach to assess average niche breadth of communities can be more informative than a unidimensional measure. Our results suggest that widespread land abandonment and current secondary forest expansion throughout the Mediterranean area are promoting functional homogenization of bird communities. It would be desirable to construct larger‐scale indicators of functional homogenization in order to monitor communities’ responses to widespread landscape changes.  相似文献   

2.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

3.
Living on the edge: British and Irish woodland birds in a European context   总被引:1,自引:1,他引:0  
This paper reviews broad geographical patterns in the species composition of breeding woodland bird communities from Ireland to eastern Europe and outlines how processes affecting woodland birds in Britain and Ireland may differ from those operating in mainland Europe. Bird communities in British and Irish woodlands consist of a subset of the species occurring within European forests at similar latitudes. The occurrence of virtually all groups of forest birds is lower in Britain, and strikingly lower in Ireland, than in other temperate areas of mainland Europe. This phenomenon appears to form part of a west–east gradient in species diversity and is probably not just a consequence of insularity. Across this gradient there appears to be broad geographical constancy in the types (taxonomic, ecological and life-history groups) of species present. There is considerable spatial variation in habitat use by forest species within Europe. Some species in Britain probably use habitats in different ways to elsewhere for reasons related to competition, predation and historical adaptation to landscape change. Several species appear to reach the limits of their geographical ranges within Britain (i.e. in the absence of physical barriers). We suggest that range contraction of one of these species, the Common Nightingale Luscinia megarhynchos , in Britain may partially reflect redistribution into the highest quality areas in response to a wider population decline. It is argued that conclusions drawn from studies of forest birds in Britain do not necessarily apply in other regions and vice versa. There is a need for large-scale studies in Europe of the spatial variation in organization of forest bird assemblages, habitat use and the genetic structure of populations.  相似文献   

4.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

5.
Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.  相似文献   

6.
Aim A major floristic and climatic transition from aseasonal to seasonal evergreen tropical forest (the Kangar–Pattani Line; KPL) exists in the Indo‐Sundaic region of Southeast Asia. Mechanisms constraining species distribution here are at present poorly understood, but it is hypothesized that species differ in their tolerances of abiotic factors, in particular water availability. Under this hypothesis, we anticipate differences in performance or habitat preferences, or both, of species differing in distribution with respect to the KPL. The aim of this study is to test whether geographical distributions can be used to explain variation in growth, mortality and habitat preferences in co‐occurring tree species differing in their distribution in relation to the KPL. Location Pasoh Forest Reserve, Negeri Sembilan, Malaysia; south of the KPL. Methods All tree species within a 50‐ha forest dynamics plot were classified as widespread or southern based upon their distributions in relation to the KPL and as habitat specialists or generalists based on spatial association with soil‐based habitat categories. Growth and mortality rates, variation in growth and mortality with respect to soil type, and levels of habitat association were quantified for species with different geographical distributions. Results Differences existed in species performance based upon geographical distributions. Specifically, widespread species had lower growth rates than did species restricted to the aseasonal forests. Mortality rates did not differ as a function of geographical distribution. The growth responses of species to soil habitats also diverged, such that differences in performance of widespread species among soil types were more conservative than those of species restricted in their distribution to the aseasonal forests. However, the proportion of species showing positive habitat associations did not differ significantly between widespread and southern species. Main conclusions Distribution‐based differences in species performance and response to soil type support the hypothesis that species tolerant of wider climatic variation perform less well in any given environment due to limitations on plasticity. These performance differences provide quantitative evidence of the role of climatic transitions in determining tree species distributions in relation to the Kangar–Pattani Line in the Indo‐Malay region. Such differences in performance have important implications for our understanding of biodiversity gradients and responses of Indo‐Sundaic forests to climate change.  相似文献   

7.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

8.
Genetic variation was studied in the yews of western Himalayas and its associates with the help of RAPD and AFLP markers. Polymorphic bands generated by RAPD and AFLP markers were 75% and 43%, respectively. Average genetic similarity values among the collections from west Himalayas expressed by Jaccard’s coefficient were 0.82 and 0.61 for RAPD and AFLP, respectively. Marker index (MI) and effective multiplex ratio (E) for AFLP were much more than RAPD thereby suggesting greater efficiency of AFLP in detecting genetic variation among the collections. Clustering pattern and the genetic distances among the west and east Himalayan yew revealed the possibility of occurrence of species level differentiation of the Himalayan yew.  相似文献   

9.
The spatial distributions of species, and the resulting composition of local communities, are shaped by a complex interplay between species’ climatic and habitat preferences. We investigated this interaction by analyzing how the climatic niches of bird species within given communities (measured as a community thermal index, CTI) are related to vegetation structure. Using 3129 bird communities from the French Breeding Bird Survey and an information theoretic multimodel inference framework, we assessed patterns of CTI variation along landscape scale gradients of forest cover and configuration. We then tested whether the CTI varies along local scale gradients of forest structure and composition using a detailed data set of 659 communities from six forests located in northwestern France. At landscape scale, CTI values decreased with increasing forest cover, indicating that bird communities were increasingly dominated by cold‐dwelling species. This tendency was strongest at low latitudes and in landscapes dominated by unfragmented forest. At local scale, CTI values were higher in mature deciduous stands than in conifer or early stage deciduous stands, and they decreased consistently with distance from the edge of forest. These trends underpin the assertion that species’ habitat use along forest gradients is linked with their climatic niche, although it remains unclear to what extent it is a direct consequence of microclimatic variation among habitats, or a reflection of macroscale correlations between species’ thermal preferences and their habitat choice. Moreover, our results highlight the need to address issues of scale in determining how habitat and climate interact to drive the spatial distribution of species. This will be a crucial step towards accurate predictions of changes in the composition and dynamics of bird communities under global warming.  相似文献   

10.
Climate change related risks and impacts on ectotherms will be mediated by habitats and their influence on local thermal environments. While many studies have documented morphological and genetic aspects of niche divergence across habitats, few have examined thermal performance across such gradients and directly linked this variation to contemporary climate change impacts. In this study, we quantified variation in thermal performance across a gradient from forest to gallery forest‐savanna mosaic in Cameroon for a skink species (Trachylepis affinis) known to be diverging genetically and morphologically across that habitat gradient. Based on these results, we then applied a mechanistic modelling approach (NicheMapR) to project changes in potential activity, as constrained by thermal performance, in response to climate change. As a complimentary approach, we also compared mechanistic projections with climate‐driven changes in habitat suitability based on species distribution models of forest and ecotone skinks. We found that ecotone skinks may benefit from warming and experience increased activity while forest skinks will likely face a drastic decrease in thermal suitability across the forest zone. Species distribution models projected that thermal suitability for forest skinks in coastal forests would decline but in other parts of the forest zone skinks are projected to experience increased thermal suitability. The results here highlight the utility of mechanistic approaches in revealing and understanding patterns of climate change vulnerability which may not be detected with species distribution models alone. This study also emphasizes the importance of intra‐specific physiological variation, and habitat‐specific thermal performance relationships in particular, in determining warming responses.  相似文献   

11.
The Great Himalayan National Park (GHNP), located in western Himalaya, is a key mountainous ecosystem prone to environmental vulnerability because of anthropogenic stress and the natural disasters, viz., landslide and forest fire. We assessed the environmental vulnerability of the eco-development zone of GHNP using remote sensing (RS) and geographic information system (GIS) technologies. To quantify the environmental vulnerability, a numerical model using spatial principal component analysis (SPCA) was developed. This model considered five factors: land use/land cover, forest canopy density, forest fire risk, landslide susceptibility and human population density. The environmental vulnerability integrated index (EVSI) calculated for the 1990, 2000 and 2010 periods was found to be 2.00, 2.72, and 3.40, respectively. The results showed temporal increase in the environmental vulnerability in the zone. Based on the numerical outputs, the vulnerability of the region was categorized into five classes: potential, slight, medium, high, and severe. The primary factor responsible for the increase in vulnerability overtime was land use/land cover change in the study area due to hydro-electric power projects, construction of roads, and other infrastructure developments. Forest fire and decreased forest canopy density are other major contributing factors responsible for the increase in the environmental vulnerability. Our results indicated that integration of RS, GIS and SPCA can effectively quantify and assess environmental vulnerability.  相似文献   

12.
The few remaining Afromontane forest fragments in northern Ethiopia and the surrounding degraded, semiarid matrix form a habitat mosaic of varying suitability for forest birds. To evaluate the effect of recent land rehabilitation efforts on bird community composition and diversity, we studied bird species distributions in ten small forest fragments (0.40–20.95 ha), five grazing exclosures (10-year-old forest restoration areas without wood extraction and grazing livestock) and three grazed matrix sites during the rainy season (July–October 2004) using 277 one-hour species counts. Based on the distribution pattern of 146 bird species, sites were assigned to one of three bird communities (birds of moist forest, dry forest or degraded savanna), each occupying a well-defined position along an environmental gradient reflecting decreasing vegetation structure and density. All three communities were representative of the avifauna of Afrotropical Highland open forest and woodland with a high proportion of invasive and competitive generalist species (31%). Apart from these, exclosures shared more species with forest fragments (20%) than did the grazed matrix (5%), indicating local ecosystem recovery. By increasing habitat heterogeneity, exclosures have the potential to enhance landscape connectivity for forest birds and are, therefore, an effective instrument for conserving species in a fragmented landscape. However, 52 bird species (36%) occurred exclusively within forest patches and many forest birds that use exclosures are unlikely to maintain viable populations when forest fragments disappear, particularly as forest fragments may be a critical resource during the hot dry season. This highlights the high conservation value of small isolated forest fragments for less tolerant, forest-limited and/or biome-restricted species.  相似文献   

13.
Theobroma cacao plantings, when managed under the shade of rainforest trees, provide habitat for many resident and migratory bird species. We compared the bird diversity and community structure in organic cacao farms and nearby forest fragments throughout mainland Bocas del Toro, Panama. We used this dataset to ask the following questions: (1) How do bird communities using cacao habitat compare to communities of nearby forest fragments? (2) To what extent do Northern migratory birds use shaded cacao farms, and do communities of resident birds shift their abundances in cacao farms seasonally? (3) Do small scale changes in shade management of cacao farms affect bird diversity? Using fixed radius point counts and additional observations, we recorded 234 landbird species, with 102 species that were observed in both cacao and forest fragments, 86 species that were only observed in cacao farms, and 46 species that were restricted to forest fragments. Cacao farms were rich in canopy and edge species such as tanagers, flycatchers and migratory warblers, but understory insectivores were nearly absent from cacao farms. We observed 27 migratory species, with 18 species in cacao farms only, two species in forest only, and seven species that occurred in both habitats. In cacao farms, the diversity of birds was significantly greater where there was less intensive management of the canopy shade trees. Shade tree species richness was most important for explaining variance in bird diversity. Our study shows that shaded cacao farms in western Panama provide habitat for a wide variety of resident and migratory bird species. Considering current land use trends in the region, we suggest that action must be taken to prevent conversion away from shaded cacao farms to land uses with lower biodiversity conservation value.  相似文献   

14.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

15.
Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high‐intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm‐ and cold‐associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold‐associated species, whilst for butterflies, warm‐associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in response to climate change. Specifically, high‐intensity land use appears to exacerbate declines in cold‐adapted bird and butterfly species, and prevent increases in warm‐associated birds. This has broad implications for managing landscapes to promote climate change adaptation.  相似文献   

16.
Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.  相似文献   

17.
吴东辉  张柏  陈鹏 《生态学杂志》2007,26(1):131-134
对吉林省中西部平原典型农林用地进行土壤昆虫幼虫调查。结果表明,中部平原土壤昆虫幼虫类群数和个体数量显著高于西部平原,中部平原与西部平原土壤昆虫幼虫个体数量差别主要表现在步甲科、拟球甲科和大蚊科3个类群,农田和居民点园地土壤昆虫幼虫类群数量和个体数量明显低于防护林,耕作活动使土壤昆虫幼虫个体数量土壤剖面分布更均匀,鞘翅目幼虫、双翅目幼虫和鳞翅目幼虫对农林用地方式变化的反应存在差异。  相似文献   

18.
In birds and mammals, mobbing calls constitute an important form of social information that can attract numerous sympatric species to localized mobbing aggregations. While such a response is thought to reduce the future predation risk for responding species, there is surprisingly little empirical evidence to support this hypothesis. One way to test the link between predation risk reduction and mobbing attraction involves testing the relationship between species’ attraction to mobbing calls and the functional traits that define their vulnerability to predation risk. Two important traits known to influence prey vulnerability include relative prey‐to‐predator body size ratio and the overlap in space use between predator and prey; in combination, these measures strongly influence prey accessibility, and therefore their vulnerability, to predators. Here, we combine community surveys with behavioral experiments of a diverse bird assemblage in the lowland rainforest of Sumatra to test whether the functional traits of body mass (representing body size) and foraging height (representing space use) can predict species’ attraction to heterospecific mobbing calls. At four forest sites along a gradient of forest degradation, we characterized the resident bird communities using point count and mist‐netting surveys, and determined the species groups attracted to standardized playbacks of mobbing calls produced by five resident bird species of roughly similar body size and foraging height. We found that (1) a large, diverse subcommunity of bird species was attracted to the mobbing calls and (2) responding species (especially the most vigorous respondents) tended to be (a) small (b) mid‐storey foragers (c) with similar trait values as the species producing the mobbing calls. Our findings from the relatively lesser known bird assemblages of tropical Asia add to the growing evidence for the ubiquity of heterospecific information networks in animal communities, and provide empirical support for the long‐standing hypothesis that predation risk reduction is a major benefit of mobbing information networks.  相似文献   

19.
There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence–absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south–north gradient in Finland, that between 1970–1989 and 2000–2012, 128 bird species shifted their densities, on average, 37 km towards the north north‐east. The species‐specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north‐east (186 km), the species‐specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species‐specific characteristics and human land‐use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north‐west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.  相似文献   

20.
Land‐use change and climate change are driving a global biodiversity crisis. Yet, how species' responses to climate change are correlated with their responses to land‐use change is poorly understood. Here, we assess the linkages between climate and land‐use change on birds in Neotropical forest and agriculture. Across > 300 species, we show that affiliation with drier climates is associated with an ability to persist in and colonise agriculture. Further, species shift their habitat use along a precipitation gradient: species prefer forest in drier regions, but use agriculture more in wetter zones. Finally, forest‐dependent species that avoid agriculture are most likely to experience decreases in habitable range size if current drying trends in the Neotropics continue as predicted. This linkage suggests a synergy between the primary drivers of biodiversity loss. Because they favour the same species, climate and land‐use change will likely homogenise biodiversity more severely than otherwise anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号