首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most research examining how herbivores and pathogens affect performance of invasive plants focuses on aboveground interactions. Although important, the role of belowground communities remains poorly understood, and the relative impact of aboveground and belowground interactions is still debated. As well, most studies of belowground interactions have been carried out in controlled environments, so little is known about the role of these interactions under natural conditions or how these relationships may change across a plant's range. Using the invasive plant Cirsium arvense, we performed a reciprocal transplant experiment to test the relative impacts of above‐ and belowground interactions at three sites across a 509‐km latitudinal gradient in its invaded range in Ontario, Canada. At each site, C. arvense seedlings were protected with above‐ and/or belowground exclosures in a factorial design. Plant performance (biomass, height, stem thickness, number of leaves, length of longest leaf, maximum rhizome length) was greatest when both above‐ and belowground exclosures were applied and lowest when no exclosures were applied. When only one type of exclosure was applied, biomass generally improved more with belowground exclosures than with aboveground exclosures. Despite site‐to‐site differences in foliar damage, root damage, and mesofaunal populations, belowground interactions generally had a greater negative impact on performance than aboveground herbivory alone. These results stress the importance of including both aboveground enemy interactions and plant–soil interactions in studies of plant community dynamics and invader performance.  相似文献   

2.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

3.
Aim Invasion of nitrogen‐fixing non‐native plant species may alter soil resources and impact native plant communities. Altered soils may be the driving mechanism that provides a suitable environment to facilitate future invasions and decrease native biodiversity. We hypothesized that Melilotus invasion would increase nitrogen availability and produce soil microclimate and biochemical changes, which could in turn alter plant species composition in a montane grassland community. Location Our research addressed the effects of white and yellow sweet clover (Melilotus officinalis and M. alba) invasion on soil characteristics and nitrogen processes in the montane grasslands in Rocky Mountain National Park. Methods We sampled soil in replicate sites of Melilotus‐invaded and control (non‐invaded) patches within disturbed areas in montane grassland habitats. Soil composites were analysed for available nitrogen, net nitrogen mineralization, moisture, carbon/nitrogen (C : N ratio), texture, organic matter and pH. Data were recorded at three sample dates during the growing seasons of 1998 and 1999. Results Contrary to our expectations, we observed lower nitrogen availability and mineralization in invaded patches, and differences in soil moisture content and soil C : N. Soil C : N ratios were higher in invaded plots, in spite of the fact that Melilotus had the lowest C : N ratios of other plant tissue analysed in this study. Main conclusions These findings provide land managers of natural areas with a better perspective on the possibilities of nitrogen‐fixing species impact on soil nutrient levels.  相似文献   

4.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

5.
Centaurea diffusa is one of the most destructive invasive weeds in the western USA and allelopathy appears to contribute to its invasiveness ( Callaway & Aschehoug 2000 ). Here we identify a chemical from the root exudates of C. diffusa, 8‐hydroxyquinoline, not previously reported as a natural product, and find that it varies biogeographically in its natural concentration and its effect as an allelochemical. 8‐Hydroxyquinoline is at least three times more concentrated in C. diffusa‐invaded North American soils than in this weed's native Eurasian soils and has stronger phytotoxic effects on grass species from North America than on grass species from Eurasia. Furthermore, experimental communities built from North American plant species are far more susceptible to invasion by C. diffusa than communities built from Eurasian species, regardless of the biogeographical origin of the soil biota. Sterilization of North American soils suppressed C. diffusa more than sterilization of Eurasian soils, indicating that North American soil biota may also promote invasion by C. diffusa. Eurasian plants and soil microbes may have evolved natural resistance to 8‐hydroxyquinoline while North American plants have not, suggesting a remarkable potential for evolutionary compatibility and homeostasis among plants within natural communities and a mechanism by which exotic weeds destroy these communities.  相似文献   

6.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

7.
This study is one of the first to show that invasive plant-induced changes in the soil microbial community can negatively impact native plant performance. This greenhouse experiment tested whether soil microbial communities specific to the rhizospheres of an invasive grass (Aegilops triuncialis) and two native plants (Lasthenia californica and Plantago erecta) affected invasive and/or native plant performance. Each of these species were grown in separate pots for 2 months to prime the soils with plant-specific rhizosphere microbial communities. Each plant species was then planted in native- and invasive-primed soil, and effects on plant performance were monitored. At 5 months, differences in microbial biomarker fatty acids between invaded and native soils mirrored previous differences found in field-collected soil. L. californica performance was significantly reduced when grown in invaded soil compared to native soil (flowering date was delayed, aboveground biomass decreased, specific root length increased, and root mass ratio increased). In contrast, P. erecta and A. triuncialis performance were unaffected when grown in invaded vs native soil. These results suggest that in some cases, invasion-induced changes in the soil microbial community may contribute to a positive feedback loop, leading to the increased dominance of invasive species in an ecosystem.  相似文献   

8.
Plant invasions pose a serious threat to native ecosystem structure and function. However, little is known about the potential role that rhizosphere soil microbial communities play in facilitating or resisting the spread of invasive species into native plant communities. The objective of this study was to compare the microbial communities of invasive and native plant rhizospheres in serpentine soils. We compared rhizosphere microbial communities, of two invasive species, Centaurea solstitialis (yellow starthistle) and Aegilops triuncialis (barb goatgrass), with those of five native species that may be competitively affected by these invasive species in the field (Lotus wrangelianus, Hemizonia congesta, Holocarpha virgata, Plantago erecta, and Lasthenia californica). Phospholipid fatty acid analysis (PLFA) was used to compare the rhizosphere microbial communities of invasive and native plants. Correspondence analyses (CA) of PLFA data indicated that despite yearly variation, both starthistle and goatgrass appear to change microbial communities in areas they invade, and that invaded and native microbial communities significantly differ. Additionally, rhizosphere microbial communities in newly invaded areas are more similar to the original native soil communities than are microbial communities in areas that have been invaded for several years. Compared to native plant rhizospheres, starthistle and goatgrass rhizospheres have higher levels of PLFA biomarkers for sulfate reducing bacteria, and goatgrass rhizospheres have higher fatty acid diversity and higher levels of biomarkers for sulfur-oxidizing bacteria, and arbuscular mycorrhizal fungi. Changes in soil microbial community composition induced by plant invasion may affect native plant fitness and/or ecosystem function.  相似文献   

9.
Many invasive alien plants drive changes in native community composition, structure and diversity. They alter soil nutrient regimes of native communities and affect native plant recovery outcomes following their removal. We assessed whether Eucalyptus grandis invasion and removal alters the soil physico‐chemical properties and native vegetation recovery in the Eastern Cape Province, South Africa. We collected samples from topsoil in E. grandis invaded sites (canopy cover > 75%), cleared sites (eight years ago) and native sites (canopy cover > 80%) and quantified soil moisture, concentrations of soil macro elements (N, C and P), pH and exchangeable cations (K, Ca, Mg, Na) as well as measured soil water repellency using the Water Droplet Penetration Time and infiltration. We conducted vegetation surveys in plots measuring 10 × 10 m. Invasion by E. grandis had varying effects on soil physico‐chemical properties, causing increase in soil pH and P, while decreasing total N and C. The removal of E. grandis also showed varying effects on soil physico‐chemical properties, but seems to have further triggered the loss of some soil nutrients (especially soil P). Soil water repellency (a measure of soil compaction) has improved in cleared sites to non‐repellent soils compared to repellent soils in invaded site. Eucalyptus grandis reduced species richness of the invaded sites. The presence of native species on cleared sites indicates a positive trajectory towards vegetation recovery. We conclude that E. grandis invasion and removal trigger varying effects on soil properties (both increases and decreases). For soil and vegetation restoration of cleared sites to be effective, active restoration techniques such as soil transfer, nutrient manipulation and native plant seeding should be considered.  相似文献   

10.
Invasive plant species have been suggested to change the composition of the soil community in a way that results in a positive feedback for them and a negative feedback for the native plant community. Carpobrotus edulis, a species native to South Africa, is one of the most aggressive exotic species in Mediterranean Europe. Although several aspects of its invasion biology have been studied, the occurrence of plant-soil feedback has been scarcely investigated. We first checked for the existence of biotic resistance in soils from two invaded sites of Mediterranean Europe and one site in the native area. Secondly, we evaluated the effects of soil conditioning on the germination and plant growth of C. edulis and two key species of native dunes. Finally, we tested the effects of short- and long-term soil conditioning on the performance and reproductive effort of C. edulis. Our results show that at first there is a natural resistance to invasion by the soil biota. Later, biotic resistance in invaded soil is suppressed by the establishment of a soil community that enhances the growth of C. edulis and that negatively influences the growth and survival of the native plants. Long-term soil conditioning in the field resulted in shifts in the balance between vegetative growth and sexual reproduction. Long-term invasion was also reflected in high levels of endophyte colonization by chytrids in roots, although the physiological consequences of this colonization remain unknown. The results obtained illustrate a mechanism that explains how C. edulis breaks the initial biotic resistance of newly-invaded landscapes. Finally, this study highlights the importance of studying plant-soil interactions on different members of the plant community and temporal stages in order to fully understand invasion.  相似文献   

11.
The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.  相似文献   

12.
土壤微生物是生态系统维持正常结构与功能的重要组成部分,为探究盐城滩涂典型湿地土壤微生物群落结构特征,以江苏盐城滩涂互花米草、藨草、盐地碱蓬、芦苇及淤泥质光滩5种典型群落为对象,采用16S rRNA高通量测序技术分析0—10 cm(表层)、10—30 cm(中层)、30—60 cm(深层)土壤微生物多样性及群落结构。结果表明:(1)几种植物群落间,土壤微生物群落结构差异较大,主要体现在细菌群落结构的差异性,古菌群落结构差异相对较小。光滩与植物群落间,在土壤细菌种类及相对丰度上差异相对较大,互花米草群落与本土植物群落间,在微生物群落的细菌种类组成上存在较大差异;藨草群落土壤表层微生物群落结构与互花米草群落相似,深层与盐地碱蓬、芦苇群落相似。(2)同一群落不同层次土壤微生物群落结构相似,差异小于不同群落间土壤微生物群落的结构差异性;不同群落对应层次间,表深层土壤中五种群落土壤微生物多样性存在显著差异,中层土壤中五种群落微生物多样性差异不显著。总体上,植物群落类型对土壤微生物群落结构的影响大于土壤深度;与本土植物群落相比,互花米草群落土壤主要优势门微生物种类差异较小,但部分优势门微生物相对丰度...  相似文献   

13.
Reed canary grass (Phalaris arundinacea, L.) invasion of wetlands is an ecological issue that has received attention, but its impact on soil microbial diversity is not well documented. The present study assessed the size (substrate-induced respiration), catabolic diversity (CLPP, community level physiological profiles) and composition (selective inhibition) of the soil microbial community in invaded (>95% P. arundinacea cover) and in non-invaded areas of a wetland occupied by native species grown either as a mixed assemblage (22 species) or as quasi-monotypic stands of Scirpus cyperinus (74% cover). The study also tested the hypothesis that decomposition of lignin- and phenolics-rich plant tissues would be fastest in soils exhibiting high catabolic diversity. Results showed that soil respiration, microbial biomass and diversity were significantly higher (P?<?0.03; 1.5 to 3 fold) in P. arundinacea-invaded soils than in soils supporting native plant species. Fungal to bacterial ratios were also higher in invaded (0.6) than in non-invaded (0.4) plots. Further, canonical discriminant analysis of CLPP data showed distinct communities of soil decomposers associated with each plant community. However, these differences in microbial attributes had no effect on decomposition of plant biomass which was primarily controlled by its chemical composition. While P. arundinacea invasion has substantially reduced plant diversity, this study found no parallel decline in the size and diversity of the soil microbial community in the invaded areas.  相似文献   

14.
Canada thistle (Cirsium arvense (L.) Scop.) is an invasive, non-native plant in many terrestrial systems, often dominating plant communities, particularly in agricultural systems. Its invasion into forest systems is not well understood. Our objectives were to investigate the establishment, persistence, and abundance of C. arvense over a 7-year period following wildfire in a forest system, and to understand environmental factors related to variability in plant community composition. In 2006, we resurveyed 30 sites in young lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm. ex Wats.) stands that burned during 1988 in Yellowstone National Park, and that had been previously sampled in 1999. C. arvense disappeared from six of nine sites where it was present in 1999, persisting in the remaining three sites; it also established at 4 new sites since 1999. Notably, the relative cover of C. arvense and other non-native plant species decreased during the 7-year period. Important ecosystem measures (plant species diversity and richness, aboveground net primary productivity, and leaf area index) were all higher in sites where C. arvense was present, and its abundance was higher on more fertile substrates and at lower elevations. Plant community composition was strongly influenced by gradients of soil texture and bare ground, rather than the presence or absence of non-native plant species. This project demonstrates the dynamic nature of an invasive species 18 years following a major disturbance, and suggests that intensive management of this species in forested systems is probably unnecessary.  相似文献   

15.
Soil pathogens affect plant community structure and function through negative plant–soil feedbacks that may contribute to the invasiveness of non‐native plant species. Our understanding of these pathogen‐induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non‐native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non‐native species and influence invasiveness. We isolated oomycetes from four sites over a 2‐year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non‐native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non‐native plant species.  相似文献   

16.
Aims Although biological invasions occur throughout the world, and some invaders are widespread in many habitats, few studies on the ecological impact of invaders have examined multiple sites. We tested how the impact of three widespread plant invaders changed depending on the identity of the species and the invaded island. We also tested whether relative species loss was lower in species‐rich communities than in species‐poor ones. Location We conducted floristic surveys and soil analyses in eight Mediterranean Basin islands: Crete and Lesbos (Greece), Sardinia (Italy), Corsica, Bagaud and Porquerolles (France), and Mallorca and Menorca (Spain). Methods We compared native species richness and diversity, proportion of life forms, soil percentage nitrogen, percentage organic carbon, C/N, and soil pH in nearby paired plots of 2 × 2 m: one control and one invaded by either the deciduous tree Ailanthus altissima, the succulent subshrubs Carpobrotus spp. or the annual geophyte Oxalis pes‐caprae, across eight Mediterranean Basin islands. Results On average, the presence of invaders reduced species diversity, Carpobrotus spp. exhibiting the largest impact and Oxalis the least. However, the relative impact was island‐dependent, and was positively but weakly associated with the species richness of the recipient community. Therophytes were the life form that experienced the largest decrease across islands. The effects of invasion on soil properties were very variable. Total N changed (increased) only in plots invaded by Ailanthus, significantly decreasing the C/N ratio. The presence of this tree increased soil pH, whereas the opposite was found in plots invaded by the other two species. Organic C increased in plots invaded by Ailanthus and Carpobrotus species. Main conclusions By conducting an analysis at multiple sites, we found that the three plant invaders had an impact on plant community structure not entirely concordant with changes in soil properties. The impacts depended on the identity of the species and of the invaded island, suggesting that impact of invaders is context‐specific. The impact in terms of species loss was not lower in species‐rich than in species‐poor communities.  相似文献   

17.
黄顶菊对入侵地群落动态及植物生长生理特征的影响   总被引:1,自引:0,他引:1  
为明确黄顶菊对入侵地植物群落和土著植物生理生长的影响机制,采用同质园试验对入侵和非入侵土壤的植物群落开展了整个生育期动态监测,并分析了黄顶菊入侵对狗尾草、羽叶鬼针草、灰绿藜、地肤4种土著植物生长和生理特征的影响规律。结果表明:黄顶菊入侵土壤植物群落多样性指数低于非入侵地,且有季节性差异,随生育期的推进差异逐渐减小;黄顶菊对本地植物的生长指标有显著影响(P0.05),随时间变化显著,但存在物种差异;4种植物的净光合速率(Pn)、气孔导度(Cd)、蒸腾速率(Tr)在非入侵土壤生长显著高于入侵地土壤(P0.05);而4种植物在入侵土壤生长的比叶面积(SLA)、比根长(SRL)、比根面积(SRA)显著高于本地土壤(P0.05)。综上,黄顶菊入侵抑制了本地植物的光合效率,减少了生物量的积累,导致本地植物群落的生物多样性水平降低,但表现出季节差异;不同物种对黄顶菊入侵胁迫的响应表现种间特异性,为理解入侵种对群落结构影响和实现入侵生境恢复提供了理论依据。  相似文献   

18.
Invasions of exotic plant species are among the most pervasive and important threats to natural ecosystems. However, the effects of plant invasions on soil processes and soil biota have not been adequately investigated. Changes were studied in soil microbial communities where Mikania micrantha was invading a native forest community in Neilingding Island, Shenzhen, China. The soil microbial community structure (assessed by phospholipid fatty acid [PLFA] profiles) and function (assessed by enzyme activities), as well as soil chemical properties were measured. The results showed that the invasion of M. micrantha into the evergreen broadleaved forests in South China changed most of the characteristics in studied soils. Microbial community structure and function differed significantly among the native, two ecotones, and exotic-derived soils. For PLFA profiles, we observed a significant increase in aerobic bacteria but a decrease in anaerobic bacteria in the M. micrantha monoculture as compared to the native and ecotones. The ratio of cy19:0 to18:1ω7 gradually declined but mono/sat PLFAs increased as M. micrantha became more dominant. Both ratios were significantly related to pH according to regression analysis, therefore, pH was a sensitive indicator reflecting the invaded soil subsystem succession. The microbial community composition clearly separated the native soil from the invaded soils by principal component analysis (PCA) and discriminant analysis (DA). For enzyme activities, 7 of 9 enzymes (β-glucosidase, invertase, protease, urease, acid phosphatase, alkaline phosphatase, and phenol oxidase) showed the similar trend that the activities were highest in the exotic, intermediate in the two ecotones, and lowest in the native community. In most cases, enzyme activities were influenced by soil chemical properties, especially by pH value and soil organic matter. Differences in the structural variables were well correlated to differences in the functional variables as demonstrated by canonical correlation analysis (CCA). It was concluded that M. micrantha invasion had profound effects on the soil subsystem, which must be taken into account when we try to control its invasions.  相似文献   

19.
为明确不同入侵地植物群落和土壤生态对黄顶菊入侵的反馈机制,选取天津静海(JH)、河北沧州(CZ)、河北衡水(HS)及河南安阳(AY)4个黄顶菊入侵典型区域,研究黄顶菊对不同入侵地植物群落多样性、土壤理化及土壤微生物群落结构的影响,并进一步揭示植物群落、土壤养分和土壤微生物之间的相关关系。结果表明,黄顶菊入侵显著降低了JH、CZ和HS的植物群落多样性指数(P0.05),改变了四个地区的土壤理化性质,显著升高了不同入侵地真菌PLFA的含量、总PLFA的含量、真菌/细菌和革兰氏阴性菌/革兰氏阳性菌(P0.05),降低了土壤微生物的Margalef丰富度指数(P0.05),但均存在地区间差异;RDA和相关分析的结果表明,硝态氮、全氮的含量对植物群落的影响较大,而铵态氮的含量对土壤微生物群落结构的影响较大,除丰富度指数外,植物群落与土壤微生物群落的多样性指数之间存在显著的负相关关系(P0.05)。总之,黄顶菊改变了入侵地植物群落多样性,并且对入侵地土壤理化性质和土壤微生物群落结构产生了显著影响,且存在地区差异。本研究将为更好的理解外来植物的入侵机制及制定相应的防控策略提供理论依据。  相似文献   

20.
Invasive plant species can alter belowground microbial communities. Simultaneously, the composition of soil microbial communities and the abundance of key microbes can influence invasive plant success. Such reciprocal effects may cause plant–microbe interactions to change rapidly during the course of biological invasions in ways that either inhibit or promote invasive species growth. Here we use a space-for-time substitution to illustrate how effects of soil microbial communities on the exotic legume Vicia villosa vary across uninvaded sites, recently invaded sites, and sites invaded by V. villosa for over a decade. We find that soil microorganisms from invaded areas increase V. villosa growth compared to sterilized soil or live soils collected from uninvaded sites, likely because mutualistic nitrogen-fixing rhizobia are not abundant in uninvaded areas. Notably, the benefits resulting from inoculation with live soils were higher for soils from recently invaded sites compared to older invasions, potentially indicating that over longer time scales, soil microbial communities change in ways that may reduce the success of exotic species. These findings suggest that short-term changes to soil microbial communities following invasion may facilitate exotic legume growth likely because of increases in the abundance of mutualistic rhizobia, but also indicate that longer term changes to soil microbial communities may reduce the growth benefits belowground microbial communities provide to exotic species. Our results highlight the changing nature of plant–microbe interactions during biological invasions and illustrate how altered biotic interactions could contribute to both the initial success and subsequent naturalization of invasive legume species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号