首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Investigations into the thermal physiology of weed biological control agents may elucidate reasons for establishment failure following release. Such studies have shown that the success of water hyacinth biological control in South Africa remains variable in the high‐lying interior Highveld region, because the control agents are restricted to establishment and development due to extreme winter conditions. To determine the importance of thermal physiology studies, both pre‐ and post‐release, this study compared the known thermal requirements of Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) released in 1996, with those of an agent released in 1990, Niphograpta albiguttalis (Warren) (Lepidoptera: Pyralidae) and a candidate agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae), which is currently under consideration for release. The lower developmental threshold (to) and rate of development (K) were determined for N. albiguttalis and M. scutellaris, using a reduced axis regression, and incorporated into a degree‐day model which compared the number of generations that E. catarinensis, N. albiguttalis, and M. scutellaris are capable of producing annually at any given site in South Africa. The degree‐day models predicted that N. albiguttalis (K = 439.43, to = 9.866) can complete 4–11 generations per year, whereas M. scutellaris (K =502.96, to = 11.458) can only complete 0–10 generations per year, compared with E. catarinensis (K = 342, to = 10.3) which is predicted to complete 3–14 generations per year. This suggests that the candidate agent, M. scutellaris, will not fare better in establishment than the other two agents that have been released in the Highveld, and that it may not be worth releasing an agent with higher thermal requirements than the agents that already occur in these high‐lying areas. Thermal physiology studies conducted prior to release are important tools in biological control programmes, particularly those in resource‐limited countries, to prevent wasting efforts in getting an agent established.  相似文献   

2.
Mastocarpus stellatus and Chondrus crispus often co‐occur in the lower intertidal of Northern Atlantic rocky shorelines. At our field site along the Maine coast (USA), Mastocarpus stellatus thalli possessed greater contents of proline when compared with thalli of Chondrus crispus. In addition, M. stellatus thalli acclimated to colder growth conditions in winter/early spring by increasing proline content several fold; no seasonal acclimation in proline content was observed in C. crispus. Proline accumulates in the tissues of a broad diversity of freezing‐tolerant organisms and is among the most common cryoprotectant molecules. Thus, our observations provide a basis for the previously well‐documented greater freezing tolerance of Mastocarpus stellatus when compared with Chondrus crispus.  相似文献   

3.
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.  相似文献   

4.
Thermal tolerance has a major effect on individual fitness and species distributions and can be determined by genetic variation and phenotypic plasticity. We investigate the effects of developmental and adult thermal conditions on cold tolerance, measured as chill coma recovery (CCR) time, during the early and late adult stage in the Glanville fritillary butterfly. We also investigate the genetic basis of cold tolerance by associating CCR variation with polymorphisms in candidate genes that have a known role in insect physiology. Our results demonstrate that a cooler developmental temperature leads to reduced cold tolerance in the early adult stage, whereas cooler conditions during the adult stage lead to increased cold tolerance. This suggests that adult acclimation, but not developmental plasticity, of adult cold tolerance is adaptive. This could be explained by the ecological conditions the Glanville fritillary experiences in the field, where temperature during early summer, but not spring, is predictive of thermal conditions during the butterfly's flight season. In addition, an amino acid polymorphism (Ala‐Glu) in the gene flightin, which has a known function in insect flight and locomotion, was associated with CCR. These amino acids have distinct biochemical properties and may thus affect protein function and/or structure. To our knowledge, our study is the first to link genetic variation in flightin to cold tolerance, or thermal adaptation in general.  相似文献   

5.
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin‐related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol‐enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye‐labelled plasma membrane, providing evidence that DRP1E localizes non‐uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol‐enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.  相似文献   

6.
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.  相似文献   

7.
Schizopygopsis younghusbandi is an endemic fish of Tibet characterized by slow growth. Artificial stock enhancement was applied to rebuild the natural population of S. younghusbandi in recent years. However, the optimal growth temperature and thermal tolerance of S. younghusbandi has not been studied, which restricts the production of S. younghusbandi fingerling for stock enhancement. The purpose of this paper is to determine the growth, critical thermal maximum (CTMax), lethal thermal maximum (LTMax) and acclimation response ratio (ARR) of S. younghusbandi juveniles (body weight 5.7 ± 1.2 g) at three acclimation temperature levels (10, 15, 20°C). The results showed that acclimation temperature significantly affected the growth, CTMax, LTMax and ARR of the experimental fish. Largest final weight (7.5 ± 2.3 g) was recorded in 15°C group. At a heating rate of 1°C/30 min, CTMax ranged from 30.98 to 32.01°C and LTMax ranged from 31.76 to 32.31°C in the three acclimation temperatures. Schizopygopsis younghusbandi had lower ARR value (0.097) than most other fish species. Low ARR value indicates that S. younghusbandi may have narrower thermal tolerance range and weaker acclimation ability to global warming. For successful aquaculture of S. younghusbandi juveniles, temperature should be maintained around 15°C.  相似文献   

8.
Kelps, seaweeds and seagrasses provide important ecosystem services in coastal areas, and loss of these macrophytes is a global concern. Recent surveys have documented severe declines in populations of the dominant kelp species, Saccharina latissima, along the south coast of Norway. S. latissima is a cold‐temperate species, and increasing seawater temperature has been suggested as one of the major causes of the decline. Several studies have shown that S. latissima can acclimate to a wide range of temperatures. However, local adaptations may render the extrapolation of existing results inappropriate. We investigated the potential for thermal acclimation and heat tolerance in S. latissima collected from three locations along the south coast of Norway. Plants were kept in laboratory cultures at three different growth temperatures (10, 15, and 20°C) for 4–6 weeks, after which their photosynthetic performance, fluorescence parameters, and pigment concentrations were measured. S. latissima obtained almost identical photosynthetic characteristics when grown at 10 and 15°C, indicating thermal acclimation at these temperatures. In contrast, plants grown at 20°C suffered substantial tissue deterioration, and showed reduced net photosynthetic capacity caused by a combination of elevated respiration and reduced gross photosynthesis due to lowered pigment concentrations, altered pigment composition, and reduced functionality of Photo‐system II. Our results support the hypothesis that extraordinarily high temperatures, as observed in 1997, 2002, and 2006, may have initiated the declines in S. latissima populations along the south coast of Norway. However, observations of high mortality in years with low summer temperatures suggest that reduced population resilience or other factors may have contributed to the losses.  相似文献   

9.
Organismal performance in a changing environment is dependent on temporal patterns and duration of exposure to thermal variability. We experimentally assessed the time‐dependent effects of thermal variability (i.e., patterns of thermal exposure) on the hatching performance of Drosophila melanogaster. Flies were collected in central Chile and maintained for four generations in laboratory conditions. Fourth generation eggs were acclimated to different thermal fluctuation cycles until hatching occurred. Our results show that the frequency of extreme thermal events has a significant effect on hatching success. Eggs exposed to 24 hr cycles of thermal fluctuation had a higher proportion of eggs that hatched than those acclimated to shorter (6 and 12 hr) and longer cycles (48 hr). Furthermore, eggs subjected to frequent thermal fluctuations hatched earlier than those acclimated to less frequent thermal fluctuations. Overall, we show that, egg‐to‐adult viability is dependent on the pattern of thermal fluctuations experienced during ontogeny; thus, the pattern of thermal fluctuation experienced by flies has a significant and until now unappreciated impact on fitness.  相似文献   

10.
Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CTMAX) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CTMAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CTMAX and egg‐to‐adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26–28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CTMAX were small, contributing to a <0.60 °C shift in CTMAX. Although small shifts in CTMAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear.  相似文献   

11.
Interspecific variation in life‐history traits and physiological limits can be linked to the environmental conditions species experience, including climatic conditions. As alpine environments are particularly vulnerable under climate change, we focus on the montane‐alpine fly Drosophila nigrosparsa. Here, we characterized some of its life‐history traits and physiological limits and compared these with those of other drosophilids, namely Drosophila hydei, Drosophila melanogaster, and Drosophila obscura. We assayed oviposition rate, longevity, productivity, development time, larval competitiveness, starvation resistance, and heat and cold tolerance. Compared with the other species assayed, D. nigrosparsa is less fecund, relatively long‐living, starvation susceptible, cold adapted, and surprisingly well heat adapted. These life‐history characteristics provide insights into invertebrate adaptations to alpine conditions which may evolve under ongoing climate change.  相似文献   

12.
Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky‐31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host‐grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë‐associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high‐ or low‐endophyte infection rate were broadcast seeded into 2 × 2‐m plots in a tilled, old‐field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co‐occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high‐endophyte S. pratensis increased plant richness relative to low‐endophyte cultivars. However, as expected, high‐endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass–Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass–endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co‐occurring biotic communities.  相似文献   

13.
The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.  相似文献   

14.
The adjustments in thermal physiology and energetics were investigated in male desert hamsters (Phodopus roborovskii) which were acclimated to 5°C for 4 weeks. Mean core body temperature in cold acclimated animals decreased by 0.21°C compared with controls. Further analysis revealed that the decrease mainly occurred in the scotophase, while in the photophase core body temperature remained constant during the whole cold acclimation. Thermogenic capacity, represented by resting metabolic rate and nonshivering thermogenesis increased in cold acclimated hamsters from initial values of 1.38 ± 0.05 and 5.32 ± 0.30 to 1.77 ± 0.08 and 8.79 ± 0.31 mlO2 g−1 h−1, respectively. After cold acclimation, desert hamsters maintained a relative stable body mass of 21.7 ± 0.1 g very similar to the controls kept at 23°C (21.8 ± 0.1 g). The mean values of food intake and digestible energy (metabolisable energy) in cold acclimated hamsters were 5.3 ± 0.1 g day−1 and 76.3 ± 0.9 kJ day−1 (74.8 ± 0.9), respectively, which were significantly elevated by 76.7 and 80.4% compared to that in control group. The apparent digestibility was 81.0 ± 0.3% in cold acclimated animals which was also higher than the 79.7 ± 0.2% observed in controls. This increase corresponded with adaptive adjustments in morphology of digestive tracts with 20.2 and 36.8% increases in total length and wet mass, respectively. Body fat mass and serum leptin levels in cold acclimated hamsters decreased by 40.7 and 67.1%, respectively. The wheel running turns and the onset of wheel running remained unchanged. Our study indicated that desert hamsters remained very active during cold acclimation and displayed adaptive changes in thermal physiology and energy metabolism, such as enhanced thermogenic and energy processing capacities.  相似文献   

15.
Periodic and seasonal exposure to high light is a common occurrence for many near‐shore and estuarine phytoplankton. Rapid acclimatization to shifts in light may provide an axis by which some species of phytoplankton can outcompete other microalgae. Patterns of photoacclimation and photosynthetic capacity in the raphidophyte Heterosigma akashiwo (Hada) Hada ex Hara et Chihara isolated from the mid‐Atlantic of the United States were followed in continuous cultures at low‐ and high‐light intensities, followed by reciprocal shifts to the opposite light level. The maximum quantum yield (Fv/Fm) as well as the photosynthetic cross‐section (σPSII) of photosystem II was higher in high‐light cultures compared to low‐light cultures. Significant diurnal variability in photochemistry and photoprotection was noted at both light levels, and high‐light‐acclimated cultures displayed greater variability in photoprotective pathways. When shifted from low to high light, there was only a slight and temporary decline in maximum quantum yield, while cell specific growth more than doubled within 24 h. Rapid acclimation to high light was facilitated by short‐term photoprotection (nonphotochemical quenching), reduced PSII reaction center connectivity, and electron transport. Short‐term increases in de‐epoxidated xanthophyll pigments contributed to nonphotochemical protection, but lagged behind initial increases in nonphotochemical quenching and were not the primary pathway of photoprotection in this alga. By 48 h, photochemistry of cultures shifted from low to high light resembled long‐term high‐light‐acclimated cultures. This isolate of H. akashiwo appears well poised to exploit rapid shifts in light by using unique cellular adjustments in light harvesting and photochemistry.  相似文献   

16.
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot‐acclimation or non‐acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat‐shocked flies, but in the absence of heat stress hot‐acclimated flies had reduced life spans relative to non‐acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness‐related traits.  相似文献   

17.
Water hyacinth is considered the most damaging aquatic weed in South Africa. The success of biocontrol initiatives against the weed varies nation-wide, but control remains generally unattainable in higher altitude, temperate regions. Eccritotarsus catarinensis (Hemiptera: Miridae) is a biocontrol agent of water hyacinth that was first released in South Africa in 1996. By 2011, it was established at over 30 sites across the country. These include the Kubusi River, a site with a temperate climate where agent establishment and persistence was unexpected. This study compared the critical thermal limits of the Kubusi River insect population with a laboratory-reared culture to determine whether any physiological plasticity was evident that could account for its unexpected establishment. There were no significant differences in critical thermal maxima (CTmax) or minima (CTmin) between sexes, while the effect of rate of temperature change on the thermal parameters in the experiments had a significant impact in some trials. Both CTmax and CTmin differed significantly between the two populations, with the field individuals tolerating significantly lower temperatures (CTmin: ?0.3°C?±?0.063 [SE], CTmax: 42.8°C?±?0.155 [SE]) than those maintained in the laboratory (CTmin: 1.1°C?±?0.054 [SE], CTmax: 44.9°C?±?0.196 [SE]). Acclimation of each population to the environmental conditions typical of the other for a five-day period illustrated that short-term acclimation accounted for some, but not all of the variation between their lower thermal limits. This study provides evidence for the first cold-adapted strain of E. catarinensis in the field, with potential value for introduction into other colder regions where water hyacinth control is currently unattainable.  相似文献   

18.
Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5 °C. Pre-metamorphic tadpoles hardened by 1.18 °C, while metamorphic tadpoles hardened by 0.36 °C. When raised at 21 °C, tadpoles acclimated expanding their cold tolerance by 1.3 °C in relation to larvae raised at 28 °C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans.  相似文献   

19.
The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface‐dwelling species than for soil‐dwelling species. Therefore soil‐dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface‐dwelling and four species of soil‐dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface‐dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface‐dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil‐dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil‐dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil‐dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil‐dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal range is probably costly and could reduce maximum performance at the optimal temperature.  相似文献   

20.
Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is an omnivorous generalist predator which is augmentatively released and conserved for control of whiteflies (Hemiptera: Aleyrodidae) and Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato crops. Eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) are often provided as factitious prey to improve the establishment of N. tenuis after its release. We first tested different amounts of E. kuehniella eggs per plant to optimize N. tenuis establishment and then investigated whether the amount of eggs that optimized N. tenuis establishment might be reduced by adding sugars (hydrocapsules filled with 0.5 m sucrose) under walk‐in cage and commercial greenhouse conditions. These experiments demonstrated that the addition of sugar to the diet of N. tenuis could half the amount of E. kuehniella eggs required to establish N. tenuis. Under greenhouse conditions, the progeny of N. tenuis per plant did not differ significantly between E. kuehniella alone or the half amount of E. kuehniella plus hydrocapsules. These results demonstrated that the sugar could partially substitute for E. kuehniella eggs improve establishment of N. tenuis and suggest that natural sugars such as nectar and honeydew might also beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号